ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1modge3gt1 Unicode version

Theorem m1modge3gt1 10593
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modge3gt1  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  M
) )

Proof of Theorem m1modge3gt1
StepHypRef Expression
1 1p1e2 9227 . . . 4  |-  ( 1  +  1 )  =  2
2 2p1e3 9244 . . . . . 6  |-  ( 2  +  1 )  =  3
3 eluzle 9734 . . . . . 6  |-  ( M  e.  ( ZZ>= `  3
)  ->  3  <_  M )
42, 3eqbrtrid 4118 . . . . 5  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 2  +  1 )  <_  M )
5 2z 9474 . . . . . 6  |-  2  e.  ZZ
6 eluzelz 9731 . . . . . 6  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  ZZ )
7 zltp1le 9501 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  <  M  <->  ( 2  +  1 )  <_  M ) )
85, 6, 7sylancr 414 . . . . 5  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 2  <  M  <->  ( 2  +  1 )  <_  M ) )
94, 8mpbird 167 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  2  <  M )
101, 9eqbrtrid 4118 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( 1  +  1 )  < 
M )
11 1red 8161 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  e.  RR )
12 eluzelre 9732 . . . 4  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  RR )
1311, 11, 12ltaddsub2d 8693 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( (
1  +  1 )  <  M  <->  1  <  ( M  -  1 ) ) )
1410, 13mpbid 147 . 2  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  ( M  -  1 ) )
15 eluzge3nn 9767 . . 3  |-  ( M  e.  ( ZZ>= `  3
)  ->  M  e.  NN )
16 m1modnnsub1 10592 . . 3  |-  ( M  e.  NN  ->  ( -u 1  mod  M )  =  ( M  - 
1 ) )
1715, 16syl 14 . 2  |-  ( M  e.  ( ZZ>= `  3
)  ->  ( -u 1  mod  M )  =  ( M  -  1 ) )
1814, 17breqtrrd 4111 1  |-  ( M  e.  ( ZZ>= `  3
)  ->  1  <  (
-u 1  mod  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182    - cmin 8317   -ucneg 8318   NNcn 9110   2c2 9161   3c3 9162   ZZcz 9446   ZZ>=cuz 9722    mod cmo 10544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fl 10490  df-mod 10545
This theorem is referenced by:  gausslemma2dlem0i  15736
  Copyright terms: Public domain W3C validator