ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2 Unicode version

Theorem nn0n0n1ge2 9396
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
nn0n0n1ge2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N )

Proof of Theorem nn0n0n1ge2
StepHypRef Expression
1 nn0cn 9259 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  CC )
2 1cnd 8042 . . . . . 6  |-  ( N  e.  NN0  ->  1  e.  CC )
31, 2, 2subsub4d 8368 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  -  1 )  =  ( N  -  (
1  +  1 ) ) )
4 1p1e2 9107 . . . . . 6  |-  ( 1  +  1 )  =  2
54oveq2i 5933 . . . . 5  |-  ( N  -  ( 1  +  1 ) )  =  ( N  -  2 )
63, 5eqtr2di 2246 . . . 4  |-  ( N  e.  NN0  ->  ( N  -  2 )  =  ( ( N  - 
1 )  -  1 ) )
763ad2ant1 1020 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  2 )  =  ( ( N  -  1 )  - 
1 ) )
8 3simpa 996 . . . . . . 7  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  e.  NN0  /\  N  =/=  0 ) )
9 elnnne0 9263 . . . . . . 7  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
108, 9sylibr 134 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  N  e.  NN )
11 nnm1nn0 9290 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1210, 11syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  e.  NN0 )
131, 2subeq0ad 8347 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  =  0  <->  N  = 
1 ) )
1413biimpd 144 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  =  0  ->  N  =  1 ) )
1514necon3d 2411 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  =/=  1  ->  ( N  -  1 )  =/=  0 ) )
1615imp 124 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =/=  1 )  -> 
( N  -  1 )  =/=  0 )
17163adant2 1018 . . . . 5  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  =/=  0 )
18 elnnne0 9263 . . . . 5  |-  ( ( N  -  1 )  e.  NN  <->  ( ( N  -  1 )  e.  NN0  /\  ( N  -  1 )  =/=  0 ) )
1912, 17, 18sylanbrc 417 . . . 4  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  e.  NN )
20 nnm1nn0 9290 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
2119, 20syl 14 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
227, 21eqeltrd 2273 . 2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  2 )  e.  NN0 )
23 2nn0 9266 . . . . 5  |-  2  e.  NN0
2423jctl 314 . . . 4  |-  ( N  e.  NN0  ->  ( 2  e.  NN0  /\  N  e. 
NN0 ) )
25243ad2ant1 1020 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
2  e.  NN0  /\  N  e.  NN0 ) )
26 nn0sub 9392 . . 3  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <_  N  <->  ( N  -  2 )  e.  NN0 ) )
2725, 26syl 14 . 2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
2  <_  N  <->  ( N  -  2 )  e. 
NN0 ) )
2822, 27mpbird 167 1  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882    <_ cle 8062    - cmin 8197   NNcn 8990   2c2 9041   NN0cn0 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327
This theorem is referenced by:  nn0n0n1ge2b  9405
  Copyright terms: Public domain W3C validator