ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2 Unicode version

Theorem nn0n0n1ge2 9121
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
nn0n0n1ge2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N )

Proof of Theorem nn0n0n1ge2
StepHypRef Expression
1 nn0cn 8987 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  CC )
2 1cnd 7782 . . . . . 6  |-  ( N  e.  NN0  ->  1  e.  CC )
31, 2, 2subsub4d 8104 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  -  1 )  =  ( N  -  (
1  +  1 ) ) )
4 1p1e2 8837 . . . . . 6  |-  ( 1  +  1 )  =  2
54oveq2i 5785 . . . . 5  |-  ( N  -  ( 1  +  1 ) )  =  ( N  -  2 )
63, 5syl6req 2189 . . . 4  |-  ( N  e.  NN0  ->  ( N  -  2 )  =  ( ( N  - 
1 )  -  1 ) )
763ad2ant1 1002 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  2 )  =  ( ( N  -  1 )  - 
1 ) )
8 3simpa 978 . . . . . . 7  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  e.  NN0  /\  N  =/=  0 ) )
9 elnnne0 8991 . . . . . . 7  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
108, 9sylibr 133 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  N  e.  NN )
11 nnm1nn0 9018 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1210, 11syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  e.  NN0 )
131, 2subeq0ad 8083 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  =  0  <->  N  = 
1 ) )
1413biimpd 143 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  =  0  ->  N  =  1 ) )
1514necon3d 2352 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  =/=  1  ->  ( N  -  1 )  =/=  0 ) )
1615imp 123 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =/=  1 )  -> 
( N  -  1 )  =/=  0 )
17163adant2 1000 . . . . 5  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  =/=  0 )
18 elnnne0 8991 . . . . 5  |-  ( ( N  -  1 )  e.  NN  <->  ( ( N  -  1 )  e.  NN0  /\  ( N  -  1 )  =/=  0 ) )
1912, 17, 18sylanbrc 413 . . . 4  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  e.  NN )
20 nnm1nn0 9018 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
2119, 20syl 14 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
227, 21eqeltrd 2216 . 2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  2 )  e.  NN0 )
23 2nn0 8994 . . . . 5  |-  2  e.  NN0
2423jctl 312 . . . 4  |-  ( N  e.  NN0  ->  ( 2  e.  NN0  /\  N  e. 
NN0 ) )
25243ad2ant1 1002 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
2  e.  NN0  /\  N  e.  NN0 ) )
26 nn0sub 9120 . . 3  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <_  N  <->  ( N  -  2 )  e.  NN0 ) )
2725, 26syl 14 . 2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
2  <_  N  <->  ( N  -  2 )  e. 
NN0 ) )
2822, 27mpbird 166 1  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929  (class class class)co 5774   0cc0 7620   1c1 7621    + caddc 7623    <_ cle 7801    - cmin 7933   NNcn 8720   2c2 8771   NN0cn0 8977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055
This theorem is referenced by:  nn0n0n1ge2b  9130
  Copyright terms: Public domain W3C validator