ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2 Unicode version

Theorem nn0n0n1ge2 9387
Description: A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
nn0n0n1ge2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N )

Proof of Theorem nn0n0n1ge2
StepHypRef Expression
1 nn0cn 9250 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  CC )
2 1cnd 8035 . . . . . 6  |-  ( N  e.  NN0  ->  1  e.  CC )
31, 2, 2subsub4d 8361 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  -  1 )  =  ( N  -  (
1  +  1 ) ) )
4 1p1e2 9099 . . . . . 6  |-  ( 1  +  1 )  =  2
54oveq2i 5929 . . . . 5  |-  ( N  -  ( 1  +  1 ) )  =  ( N  -  2 )
63, 5eqtr2di 2243 . . . 4  |-  ( N  e.  NN0  ->  ( N  -  2 )  =  ( ( N  - 
1 )  -  1 ) )
763ad2ant1 1020 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  2 )  =  ( ( N  -  1 )  - 
1 ) )
8 3simpa 996 . . . . . . 7  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  e.  NN0  /\  N  =/=  0 ) )
9 elnnne0 9254 . . . . . . 7  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
108, 9sylibr 134 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  N  e.  NN )
11 nnm1nn0 9281 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
1210, 11syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  e.  NN0 )
131, 2subeq0ad 8340 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  =  0  <->  N  = 
1 ) )
1413biimpd 144 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  =  0  ->  N  =  1 ) )
1514necon3d 2408 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  =/=  1  ->  ( N  -  1 )  =/=  0 ) )
1615imp 124 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =/=  1 )  -> 
( N  -  1 )  =/=  0 )
17163adant2 1018 . . . . 5  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  =/=  0 )
18 elnnne0 9254 . . . . 5  |-  ( ( N  -  1 )  e.  NN  <->  ( ( N  -  1 )  e.  NN0  /\  ( N  -  1 )  =/=  0 ) )
1912, 17, 18sylanbrc 417 . . . 4  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  1 )  e.  NN )
20 nnm1nn0 9281 . . . 4  |-  ( ( N  -  1 )  e.  NN  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
2119, 20syl 14 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
( N  -  1 )  -  1 )  e.  NN0 )
227, 21eqeltrd 2270 . 2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  ( N  -  2 )  e.  NN0 )
23 2nn0 9257 . . . . 5  |-  2  e.  NN0
2423jctl 314 . . . 4  |-  ( N  e.  NN0  ->  ( 2  e.  NN0  /\  N  e. 
NN0 ) )
25243ad2ant1 1020 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
2  e.  NN0  /\  N  e.  NN0 ) )
26 nn0sub 9383 . . 3  |-  ( ( 2  e.  NN0  /\  N  e.  NN0 )  -> 
( 2  <_  N  <->  ( N  -  2 )  e.  NN0 ) )
2725, 26syl 14 . 2  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  (
2  <_  N  <->  ( N  -  2 )  e. 
NN0 ) )
2822, 27mpbird 167 1  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029  (class class class)co 5918   0cc0 7872   1c1 7873    + caddc 7875    <_ cle 8055    - cmin 8190   NNcn 8982   2c2 9033   NN0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318
This theorem is referenced by:  nn0n0n1ge2b  9396
  Copyright terms: Public domain W3C validator