ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logblt Unicode version

Theorem logblt 14840
Description: The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 14755. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
logblt  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( B logb  X
)  <  ( B logb  Y
) ) )

Proof of Theorem logblt
StepHypRef Expression
1 simp2 1000 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  X  e.  RR+ )
21relogcld 14763 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( log `  X )  e.  RR )
3 simp3 1001 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  Y  e.  RR+ )
43relogcld 14763 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( log `  Y )  e.  RR )
5 simp1 999 . . . . . 6  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  ( ZZ>= `  2 )
)
6 eluzelz 9567 . . . . . 6  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
75, 6syl 14 . . . . 5  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  ZZ )
87zred 9405 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  RR )
9 1z 9309 . . . . 5  |-  1  e.  ZZ
10 1p1e2 9066 . . . . . . 7  |-  ( 1  +  1 )  =  2
1110fveq2i 5537 . . . . . 6  |-  ( ZZ>= `  ( 1  +  1 ) )  =  (
ZZ>= `  2 )
125, 11eleqtrrdi 2283 . . . . 5  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  ( ZZ>= `  ( 1  +  1 ) ) )
13 eluzp1l 9582 . . . . 5  |-  ( ( 1  e.  ZZ  /\  B  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  <  B )
149, 12, 13sylancr 414 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  1  < 
B )
158, 14rplogcld 14769 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( log `  B )  e.  RR+ )
162, 4, 15ltdiv1d 9772 . 2  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( ( log `  X )  <  ( log `  Y
)  <->  ( ( log `  X )  /  ( log `  B ) )  <  ( ( log `  Y )  /  ( log `  B ) ) ) )
17 logltb 14755 . . 3  |-  ( ( X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( log `  X )  <  ( log `  Y ) ) )
18173adant1 1017 . 2  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( log `  X )  <  ( log `  Y ) ) )
19 relogbval 14829 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+ )  ->  ( B logb 
X )  =  ( ( log `  X
)  /  ( log `  B ) ) )
20193adant3 1019 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( B logb  X )  =  ( ( log `  X )  /  ( log `  B
) ) )
21 relogbval 14829 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  Y  e.  RR+ )  ->  ( B logb 
Y )  =  ( ( log `  Y
)  /  ( log `  B ) ) )
22213adant2 1018 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( B logb  Y )  =  ( ( log `  Y )  /  ( log `  B
) ) )
2320, 22breq12d 4031 . 2  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( ( B logb  X )  <  ( B logb 
Y )  <->  ( ( log `  X )  / 
( log `  B
) )  <  (
( log `  Y
)  /  ( log `  B ) ) ) )
2416, 18, 233bitr4d 220 1  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( B logb  X
)  <  ( B logb  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4018   ` cfv 5235  (class class class)co 5896   1c1 7842    + caddc 7844    < clt 8022    / cdiv 8659   2c2 9000   ZZcz 9283   ZZ>=cuz 9558   RR+crp 9683   logclog 14737   logb clogb 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961  ax-pre-suploc 7962  ax-addf 7963  ax-mulf 7964
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-of 6106  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-oadd 6445  df-er 6559  df-map 6676  df-pm 6677  df-en 6767  df-dom 6768  df-fin 6769  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-xneg 9802  df-xadd 9803  df-ioo 9922  df-ico 9924  df-icc 9925  df-fz 10039  df-fzo 10173  df-seqfrec 10477  df-exp 10551  df-fac 10738  df-bc 10760  df-ihash 10788  df-shft 10856  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-sumdc 11394  df-ef 11688  df-e 11689  df-rest 12746  df-topgen 12765  df-psmet 13856  df-xmet 13857  df-met 13858  df-bl 13859  df-mopn 13860  df-top 13958  df-topon 13971  df-bases 14003  df-ntr 14056  df-cn 14148  df-cnp 14149  df-tx 14213  df-cncf 14518  df-limced 14585  df-dvap 14586  df-relog 14739  df-logb 14822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator