ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logblt Unicode version

Theorem logblt 15376
Description: The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 15288. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.)
Assertion
Ref Expression
logblt  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( B logb  X
)  <  ( B logb  Y
) ) )

Proof of Theorem logblt
StepHypRef Expression
1 simp2 1000 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  X  e.  RR+ )
21relogcld 15296 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( log `  X )  e.  RR )
3 simp3 1001 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  Y  e.  RR+ )
43relogcld 15296 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( log `  Y )  e.  RR )
5 simp1 999 . . . . . 6  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  ( ZZ>= `  2 )
)
6 eluzelz 9656 . . . . . 6  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
75, 6syl 14 . . . . 5  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  ZZ )
87zred 9494 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  RR )
9 1z 9397 . . . . 5  |-  1  e.  ZZ
10 1p1e2 9152 . . . . . . 7  |-  ( 1  +  1 )  =  2
1110fveq2i 5578 . . . . . 6  |-  ( ZZ>= `  ( 1  +  1 ) )  =  (
ZZ>= `  2 )
125, 11eleqtrrdi 2298 . . . . 5  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  B  e.  ( ZZ>= `  ( 1  +  1 ) ) )
13 eluzp1l 9672 . . . . 5  |-  ( ( 1  e.  ZZ  /\  B  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
1  <  B )
149, 12, 13sylancr 414 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  1  < 
B )
158, 14rplogcld 15302 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( log `  B )  e.  RR+ )
162, 4, 15ltdiv1d 9863 . 2  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( ( log `  X )  <  ( log `  Y
)  <->  ( ( log `  X )  /  ( log `  B ) )  <  ( ( log `  Y )  /  ( log `  B ) ) ) )
17 logltb 15288 . . 3  |-  ( ( X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( log `  X )  <  ( log `  Y ) ) )
18173adant1 1017 . 2  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( log `  X )  <  ( log `  Y ) ) )
19 relogbval 15365 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+ )  ->  ( B logb 
X )  =  ( ( log `  X
)  /  ( log `  B ) ) )
20193adant3 1019 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( B logb  X )  =  ( ( log `  X )  /  ( log `  B
) ) )
21 relogbval 15365 . . . 4  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  Y  e.  RR+ )  ->  ( B logb 
Y )  =  ( ( log `  Y
)  /  ( log `  B ) ) )
22213adant2 1018 . . 3  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( B logb  Y )  =  ( ( log `  Y )  /  ( log `  B
) ) )
2320, 22breq12d 4056 . 2  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( ( B logb  X )  <  ( B logb 
Y )  <->  ( ( log `  X )  / 
( log `  B
) )  <  (
( log `  Y
)  /  ( log `  B ) ) ) )
2416, 18, 233bitr4d 220 1  |-  ( ( B  e.  ( ZZ>= ` 
2 )  /\  X  e.  RR+  /\  Y  e.  RR+ )  ->  ( X  <  Y  <->  ( B logb  X
)  <  ( B logb  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   1c1 7925    + caddc 7927    < clt 8106    / cdiv 8744   2c2 9086   ZZcz 9371   ZZ>=cuz 9647   RR+crp 9774   logclog 15270   logb clogb 15357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044  ax-pre-suploc 8045  ax-addf 8046  ax-mulf 8047
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-disj 4021  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-of 6157  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-map 6736  df-pm 6737  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-xneg 9893  df-xadd 9894  df-ioo 10013  df-ico 10015  df-icc 10016  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-bc 10891  df-ihash 10919  df-shft 11068  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607  df-ef 11901  df-e 11902  df-rest 13015  df-topgen 13034  df-psmet 14247  df-xmet 14248  df-met 14249  df-bl 14250  df-mopn 14251  df-top 14412  df-topon 14425  df-bases 14457  df-ntr 14510  df-cn 14602  df-cnp 14603  df-tx 14667  df-cncf 14985  df-limced 15070  df-dvap 15071  df-relog 15272  df-logb 15358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator