ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3halfnz Unicode version

Theorem 3halfnz 9423
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
3halfnz  |-  -.  (
3  /  2 )  e.  ZZ

Proof of Theorem 3halfnz
StepHypRef Expression
1 1z 9352 . 2  |-  1  e.  ZZ
2 2cn 9061 . . . . 5  |-  2  e.  CC
32mullidi 8029 . . . 4  |-  ( 1  x.  2 )  =  2
4 2lt3 9161 . . . 4  |-  2  <  3
53, 4eqbrtri 4054 . . 3  |-  ( 1  x.  2 )  <  3
6 1re 8025 . . . 4  |-  1  e.  RR
7 3re 9064 . . . 4  |-  3  e.  RR
8 2re 9060 . . . . 5  |-  2  e.  RR
9 2pos 9081 . . . . 5  |-  0  <  2
108, 9pm3.2i 272 . . . 4  |-  ( 2  e.  RR  /\  0  <  2 )
11 ltmuldiv 8901 . . . 4  |-  ( ( 1  e.  RR  /\  3  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 1  x.  2 )  <  3  <->  1  <  (
3  /  2 ) ) )
126, 7, 10, 11mp3an 1348 . . 3  |-  ( ( 1  x.  2 )  <  3  <->  1  <  ( 3  /  2 ) )
135, 12mpbi 145 . 2  |-  1  <  ( 3  /  2
)
14 3lt4 9163 . . . 4  |-  3  <  4
15 2t2e4 9145 . . . . 5  |-  ( 2  x.  2 )  =  4
1615breq2i 4041 . . . 4  |-  ( 3  <  ( 2  x.  2 )  <->  3  <  4 )
1714, 16mpbir 146 . . 3  |-  3  <  ( 2  x.  2 )
18 1p1e2 9107 . . . . 5  |-  ( 1  +  1 )  =  2
1918breq2i 4041 . . . 4  |-  ( ( 3  /  2 )  <  ( 1  +  1 )  <->  ( 3  /  2 )  <  2 )
20 ltdivmul 8903 . . . . 5  |-  ( ( 3  e.  RR  /\  2  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 3  /  2 )  <  2  <->  3  <  (
2  x.  2 ) ) )
217, 8, 10, 20mp3an 1348 . . . 4  |-  ( ( 3  /  2 )  <  2  <->  3  <  ( 2  x.  2 ) )
2219, 21bitri 184 . . 3  |-  ( ( 3  /  2 )  <  ( 1  +  1 )  <->  3  <  ( 2  x.  2 ) )
2317, 22mpbir 146 . 2  |-  ( 3  /  2 )  < 
( 1  +  1 )
24 btwnnz 9420 . 2  |-  ( ( 1  e.  ZZ  /\  1  <  ( 3  / 
2 )  /\  (
3  /  2 )  <  ( 1  +  1 ) )  ->  -.  ( 3  /  2
)  e.  ZZ )
251, 13, 23, 24mp3an 1348 1  |-  -.  (
3  /  2 )  e.  ZZ
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    / cdiv 8699   2c2 9041   3c3 9042   4c4 9043   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327
This theorem is referenced by:  nn0o1gt2  12070
  Copyright terms: Public domain W3C validator