![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6t4e24 | Unicode version |
Description: 6 times 4 equals 24. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6t4e24 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 9232 |
. 2
![]() ![]() ![]() ![]() | |
2 | 3nn0 9229 |
. 2
![]() ![]() ![]() ![]() | |
3 | df-4 9015 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 6t3e18 9523 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1nn0 9227 |
. . 3
![]() ![]() ![]() ![]() | |
6 | 8nn0 9234 |
. . 3
![]() ![]() ![]() ![]() | |
7 | eqid 2189 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1p1e2 9071 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 4nn0 9230 |
. . 3
![]() ![]() ![]() ![]() | |
10 | 8p6e14 9502 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 5, 6, 1, 7, 8, 9, 10 | decaddci 9479 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 1, 2, 3, 4, 11 | 4t3lem 9515 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-cnre 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-br 4022 df-opab 4083 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-iota 5199 df-fun 5240 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-sub 8165 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 df-9 9020 df-n0 9212 df-dec 9420 |
This theorem is referenced by: 6t5e30 9525 fac4 10754 |
Copyright terms: Public domain | W3C validator |