Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add1p1 | Unicode version |
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.) |
Ref | Expression |
---|---|
add1p1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 | |
2 | 1cnd 7909 | . . 3 | |
3 | 1, 2, 2 | addassd 7915 | . 2 |
4 | 1p1e2 8968 | . . . 4 | |
5 | 4 | a1i 9 | . . 3 |
6 | 5 | oveq2d 5855 | . 2 |
7 | 3, 6 | eqtrd 2197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1342 wcel 2135 (class class class)co 5839 cc 7745 c1 7748 caddc 7750 c2 8902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 ax-1cn 7840 ax-addass 7849 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-v 2726 df-un 3118 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-iota 5150 df-fv 5193 df-ov 5842 df-2 8910 |
This theorem is referenced by: nneoor 9287 |
Copyright terms: Public domain | W3C validator |