ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add1p1 Unicode version

Theorem add1p1 9322
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1  |-  ( N  e.  CC  ->  (
( N  +  1 )  +  1 )  =  ( N  + 
2 ) )

Proof of Theorem add1p1
StepHypRef Expression
1 id 19 . . 3  |-  ( N  e.  CC  ->  N  e.  CC )
2 1cnd 8123 . . 3  |-  ( N  e.  CC  ->  1  e.  CC )
31, 2, 2addassd 8130 . 2  |-  ( N  e.  CC  ->  (
( N  +  1 )  +  1 )  =  ( N  +  ( 1  +  1 ) ) )
4 1p1e2 9188 . . . 4  |-  ( 1  +  1 )  =  2
54a1i 9 . . 3  |-  ( N  e.  CC  ->  (
1  +  1 )  =  2 )
65oveq2d 5983 . 2  |-  ( N  e.  CC  ->  ( N  +  ( 1  +  1 ) )  =  ( N  + 
2 ) )
73, 6eqtrd 2240 1  |-  ( N  e.  CC  ->  (
( N  +  1 )  +  1 )  =  ( N  + 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963   2c2 9122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-1cn 8053  ax-addass 8062
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-2 9130
This theorem is referenced by:  nneoor  9510
  Copyright terms: Public domain W3C validator