ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add1p1 Unicode version

Theorem add1p1 9127
Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
Assertion
Ref Expression
add1p1  |-  ( N  e.  CC  ->  (
( N  +  1 )  +  1 )  =  ( N  + 
2 ) )

Proof of Theorem add1p1
StepHypRef Expression
1 id 19 . . 3  |-  ( N  e.  CC  ->  N  e.  CC )
2 1cnd 7936 . . 3  |-  ( N  e.  CC  ->  1  e.  CC )
31, 2, 2addassd 7942 . 2  |-  ( N  e.  CC  ->  (
( N  +  1 )  +  1 )  =  ( N  +  ( 1  +  1 ) ) )
4 1p1e2 8995 . . . 4  |-  ( 1  +  1 )  =  2
54a1i 9 . . 3  |-  ( N  e.  CC  ->  (
1  +  1 )  =  2 )
65oveq2d 5869 . 2  |-  ( N  e.  CC  ->  ( N  +  ( 1  +  1 ) )  =  ( N  + 
2 ) )
73, 6eqtrd 2203 1  |-  ( N  e.  CC  ->  (
( N  +  1 )  +  1 )  =  ( N  + 
2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772   1c1 7775    + caddc 7777   2c2 8929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-1cn 7867  ax-addass 7876
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-2 8937
This theorem is referenced by:  nneoor  9314
  Copyright terms: Public domain W3C validator