ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o1gt2 Unicode version

Theorem nn0o1gt2 11864
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 9137 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 elnnnn0c 9180 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
3 1z 9238 . . . . . . . 8  |-  1  e.  ZZ
4 nn0z 9232 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9259 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 412 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
7 1zzd 9239 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  1  e.  ZZ )
8 zltp1le 9266 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
97, 4, 8syl2anc 409 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
10 1p1e2 8995 . . . . . . . . . . . . . 14  |-  ( 1  +  1 )  =  2
1110breq1i 3996 . . . . . . . . . . . . 13  |-  ( ( 1  +  1 )  <_  N  <->  2  <_  N )
1211a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( 1  +  1 )  <_  N  <->  2  <_  N ) )
13 2z 9240 . . . . . . . . . . . . 13  |-  2  e.  ZZ
14 zleloe 9259 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1513, 4, 14sylancr 412 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
169, 12, 153bitrd 213 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
17 olc 706 . . . . . . . . . . . . . 14  |-  ( 2  <  N  ->  ( N  =  1  \/  2  <  N ) )
18172a1d 23 . . . . . . . . . . . . 13  |-  ( 2  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
19 oveq1 5860 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  2  ->  ( N  +  1 )  =  ( 2  +  1 ) )
2019oveq1d 5868 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  2  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2120eqcoms 2173 . . . . . . . . . . . . . . . . . 18  |-  ( 2  =  N  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2221adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( ( 2  +  1 )  /  2 ) )
23 2p1e3 9011 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  1 )  =  3
2423oveq1i 5863 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  +  1 )  /  2 )  =  ( 3  /  2
)
2522, 24eqtrdi 2219 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( 3  /  2 ) )
2625eleq1d 2239 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  <->  (
3  /  2 )  e.  NN0 ) )
27 3halfnz 9309 . . . . . . . . . . . . . . . 16  |-  -.  (
3  /  2 )  e.  ZZ
28 nn0z 9232 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  /  2 )  e.  NN0  ->  ( 3  /  2 )  e.  ZZ )
2928pm2.24d 617 . . . . . . . . . . . . . . . 16  |-  ( ( 3  /  2 )  e.  NN0  ->  ( -.  ( 3  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
3027, 29mpi 15 . . . . . . . . . . . . . . 15  |-  ( ( 3  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
3126, 30syl6bi 162 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
3231expcom 115 . . . . . . . . . . . . 13  |-  ( 2  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3318, 32jaoi 711 . . . . . . . . . . . 12  |-  ( ( 2  <  N  \/  2  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3433com12 30 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( 2  <  N  \/  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3516, 34sylbid 149 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3635com12 30 . . . . . . . . 9  |-  ( 1  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
37 orc 707 . . . . . . . . . . 11  |-  ( N  =  1  ->  ( N  =  1  \/  2  <  N ) )
3837eqcoms 2173 . . . . . . . . . 10  |-  ( 1  =  N  ->  ( N  =  1  \/  2  <  N ) )
39382a1d 23 . . . . . . . . 9  |-  ( 1  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4036, 39jaoi 711 . . . . . . . 8  |-  ( ( 1  <  N  \/  1  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
4140com12 30 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
426, 41sylbid 149 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  <_  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4342imp 123 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
442, 43sylbi 120 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
45 oveq1 5860 . . . . . . . 8  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
46 0p1e1 8992 . . . . . . . 8  |-  ( 0  +  1 )  =  1
4745, 46eqtrdi 2219 . . . . . . 7  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
4847oveq1d 5868 . . . . . 6  |-  ( N  =  0  ->  (
( N  +  1 )  /  2 )  =  ( 1  / 
2 ) )
4948eleq1d 2239 . . . . 5  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  <->  ( 1  /  2 )  e. 
NN0 ) )
50 halfnz 9308 . . . . . 6  |-  -.  (
1  /  2 )  e.  ZZ
51 nn0z 9232 . . . . . . 7  |-  ( ( 1  /  2 )  e.  NN0  ->  ( 1  /  2 )  e.  ZZ )
5251pm2.24d 617 . . . . . 6  |-  ( ( 1  /  2 )  e.  NN0  ->  ( -.  ( 1  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
5350, 52mpi 15 . . . . 5  |-  ( ( 1  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
5449, 53syl6bi 162 . . . 4  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5544, 54jaoi 711 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( ( ( N  +  1 )  /  2 )  e. 
NN0  ->  ( N  =  1  \/  2  < 
N ) ) )
561, 55sylbi 120 . 2  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5756imp 123 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955    / cdiv 8589   NNcn 8878   2c2 8929   3c3 8930   NN0cn0 9135   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213
This theorem is referenced by:  nno  11865  nn0o  11866
  Copyright terms: Public domain W3C validator