Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0o1gt2 | Unicode version |
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
nn0o1gt2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9137 | . . 3 | |
2 | elnnnn0c 9180 | . . . . 5 | |
3 | 1z 9238 | . . . . . . . 8 | |
4 | nn0z 9232 | . . . . . . . 8 | |
5 | zleloe 9259 | . . . . . . . 8 | |
6 | 3, 4, 5 | sylancr 412 | . . . . . . 7 |
7 | 1zzd 9239 | . . . . . . . . . . . . 13 | |
8 | zltp1le 9266 | . . . . . . . . . . . . 13 | |
9 | 7, 4, 8 | syl2anc 409 | . . . . . . . . . . . 12 |
10 | 1p1e2 8995 | . . . . . . . . . . . . . 14 | |
11 | 10 | breq1i 3996 | . . . . . . . . . . . . 13 |
12 | 11 | a1i 9 | . . . . . . . . . . . 12 |
13 | 2z 9240 | . . . . . . . . . . . . 13 | |
14 | zleloe 9259 | . . . . . . . . . . . . 13 | |
15 | 13, 4, 14 | sylancr 412 | . . . . . . . . . . . 12 |
16 | 9, 12, 15 | 3bitrd 213 | . . . . . . . . . . 11 |
17 | olc 706 | . . . . . . . . . . . . . 14 | |
18 | 17 | 2a1d 23 | . . . . . . . . . . . . 13 |
19 | oveq1 5860 | . . . . . . . . . . . . . . . . . . . 20 | |
20 | 19 | oveq1d 5868 | . . . . . . . . . . . . . . . . . . 19 |
21 | 20 | eqcoms 2173 | . . . . . . . . . . . . . . . . . 18 |
22 | 21 | adantl 275 | . . . . . . . . . . . . . . . . 17 |
23 | 2p1e3 9011 | . . . . . . . . . . . . . . . . . 18 | |
24 | 23 | oveq1i 5863 | . . . . . . . . . . . . . . . . 17 |
25 | 22, 24 | eqtrdi 2219 | . . . . . . . . . . . . . . . 16 |
26 | 25 | eleq1d 2239 | . . . . . . . . . . . . . . 15 |
27 | 3halfnz 9309 | . . . . . . . . . . . . . . . 16 | |
28 | nn0z 9232 | . . . . . . . . . . . . . . . . 17 | |
29 | 28 | pm2.24d 617 | . . . . . . . . . . . . . . . 16 |
30 | 27, 29 | mpi 15 | . . . . . . . . . . . . . . 15 |
31 | 26, 30 | syl6bi 162 | . . . . . . . . . . . . . 14 |
32 | 31 | expcom 115 | . . . . . . . . . . . . 13 |
33 | 18, 32 | jaoi 711 | . . . . . . . . . . . 12 |
34 | 33 | com12 30 | . . . . . . . . . . 11 |
35 | 16, 34 | sylbid 149 | . . . . . . . . . 10 |
36 | 35 | com12 30 | . . . . . . . . 9 |
37 | orc 707 | . . . . . . . . . . 11 | |
38 | 37 | eqcoms 2173 | . . . . . . . . . 10 |
39 | 38 | 2a1d 23 | . . . . . . . . 9 |
40 | 36, 39 | jaoi 711 | . . . . . . . 8 |
41 | 40 | com12 30 | . . . . . . 7 |
42 | 6, 41 | sylbid 149 | . . . . . 6 |
43 | 42 | imp 123 | . . . . 5 |
44 | 2, 43 | sylbi 120 | . . . 4 |
45 | oveq1 5860 | . . . . . . . 8 | |
46 | 0p1e1 8992 | . . . . . . . 8 | |
47 | 45, 46 | eqtrdi 2219 | . . . . . . 7 |
48 | 47 | oveq1d 5868 | . . . . . 6 |
49 | 48 | eleq1d 2239 | . . . . 5 |
50 | halfnz 9308 | . . . . . 6 | |
51 | nn0z 9232 | . . . . . . 7 | |
52 | 51 | pm2.24d 617 | . . . . . 6 |
53 | 50, 52 | mpi 15 | . . . . 5 |
54 | 49, 53 | syl6bi 162 | . . . 4 |
55 | 44, 54 | jaoi 711 | . . 3 |
56 | 1, 55 | sylbi 120 | . 2 |
57 | 56 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc0 7774 c1 7775 caddc 7777 clt 7954 cle 7955 cdiv 8589 cn 8878 c2 8929 c3 8930 cn0 9135 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 |
This theorem is referenced by: nno 11865 nn0o 11866 |
Copyright terms: Public domain | W3C validator |