ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o1gt2 Unicode version

Theorem nn0o1gt2 11913
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 9181 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 elnnnn0c 9224 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
3 1z 9282 . . . . . . . 8  |-  1  e.  ZZ
4 nn0z 9276 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9303 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 414 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
7 1zzd 9283 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  1  e.  ZZ )
8 zltp1le 9310 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
97, 4, 8syl2anc 411 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
10 1p1e2 9039 . . . . . . . . . . . . . 14  |-  ( 1  +  1 )  =  2
1110breq1i 4012 . . . . . . . . . . . . 13  |-  ( ( 1  +  1 )  <_  N  <->  2  <_  N )
1211a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( 1  +  1 )  <_  N  <->  2  <_  N ) )
13 2z 9284 . . . . . . . . . . . . 13  |-  2  e.  ZZ
14 zleloe 9303 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1513, 4, 14sylancr 414 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
169, 12, 153bitrd 214 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
17 olc 711 . . . . . . . . . . . . . 14  |-  ( 2  <  N  ->  ( N  =  1  \/  2  <  N ) )
18172a1d 23 . . . . . . . . . . . . 13  |-  ( 2  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
19 oveq1 5885 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  2  ->  ( N  +  1 )  =  ( 2  +  1 ) )
2019oveq1d 5893 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  2  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2120eqcoms 2180 . . . . . . . . . . . . . . . . . 18  |-  ( 2  =  N  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2221adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( ( 2  +  1 )  /  2 ) )
23 2p1e3 9055 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  1 )  =  3
2423oveq1i 5888 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  +  1 )  /  2 )  =  ( 3  /  2
)
2522, 24eqtrdi 2226 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( 3  /  2 ) )
2625eleq1d 2246 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  <->  (
3  /  2 )  e.  NN0 ) )
27 3halfnz 9353 . . . . . . . . . . . . . . . 16  |-  -.  (
3  /  2 )  e.  ZZ
28 nn0z 9276 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  /  2 )  e.  NN0  ->  ( 3  /  2 )  e.  ZZ )
2928pm2.24d 622 . . . . . . . . . . . . . . . 16  |-  ( ( 3  /  2 )  e.  NN0  ->  ( -.  ( 3  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
3027, 29mpi 15 . . . . . . . . . . . . . . 15  |-  ( ( 3  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
3126, 30biimtrdi 163 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
3231expcom 116 . . . . . . . . . . . . 13  |-  ( 2  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3318, 32jaoi 716 . . . . . . . . . . . 12  |-  ( ( 2  <  N  \/  2  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3433com12 30 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( 2  <  N  \/  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3516, 34sylbid 150 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3635com12 30 . . . . . . . . 9  |-  ( 1  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
37 orc 712 . . . . . . . . . . 11  |-  ( N  =  1  ->  ( N  =  1  \/  2  <  N ) )
3837eqcoms 2180 . . . . . . . . . 10  |-  ( 1  =  N  ->  ( N  =  1  \/  2  <  N ) )
39382a1d 23 . . . . . . . . 9  |-  ( 1  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4036, 39jaoi 716 . . . . . . . 8  |-  ( ( 1  <  N  \/  1  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
4140com12 30 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
426, 41sylbid 150 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  <_  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4342imp 124 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
442, 43sylbi 121 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
45 oveq1 5885 . . . . . . . 8  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
46 0p1e1 9036 . . . . . . . 8  |-  ( 0  +  1 )  =  1
4745, 46eqtrdi 2226 . . . . . . 7  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
4847oveq1d 5893 . . . . . 6  |-  ( N  =  0  ->  (
( N  +  1 )  /  2 )  =  ( 1  / 
2 ) )
4948eleq1d 2246 . . . . 5  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  <->  ( 1  /  2 )  e. 
NN0 ) )
50 halfnz 9352 . . . . . 6  |-  -.  (
1  /  2 )  e.  ZZ
51 nn0z 9276 . . . . . . 7  |-  ( ( 1  /  2 )  e.  NN0  ->  ( 1  /  2 )  e.  ZZ )
5251pm2.24d 622 . . . . . 6  |-  ( ( 1  /  2 )  e.  NN0  ->  ( -.  ( 1  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
5350, 52mpi 15 . . . . 5  |-  ( ( 1  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
5449, 53biimtrdi 163 . . . 4  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5544, 54jaoi 716 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( ( ( N  +  1 )  /  2 )  e. 
NN0  ->  ( N  =  1  \/  2  < 
N ) ) )
561, 55sylbi 121 . 2  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5756imp 124 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   0cc0 7814   1c1 7815    + caddc 7817    < clt 7995    <_ cle 7996    / cdiv 8632   NNcn 8922   2c2 8973   3c3 8974   NN0cn0 9179   ZZcz 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257
This theorem is referenced by:  nno  11914  nn0o  11915
  Copyright terms: Public domain W3C validator