| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0o1gt2 | Unicode version | ||
| Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) |
| Ref | Expression |
|---|---|
| nn0o1gt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9371 |
. . 3
| |
| 2 | elnnnn0c 9414 |
. . . . 5
| |
| 3 | 1z 9472 |
. . . . . . . 8
| |
| 4 | nn0z 9466 |
. . . . . . . 8
| |
| 5 | zleloe 9493 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . . 7
|
| 7 | 1zzd 9473 |
. . . . . . . . . . . . 13
| |
| 8 | zltp1le 9501 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 4, 8 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 10 | 1p1e2 9227 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | breq1i 4090 |
. . . . . . . . . . . . 13
|
| 12 | 11 | a1i 9 |
. . . . . . . . . . . 12
|
| 13 | 2z 9474 |
. . . . . . . . . . . . 13
| |
| 14 | zleloe 9493 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 4, 14 | sylancr 414 |
. . . . . . . . . . . 12
|
| 16 | 9, 12, 15 | 3bitrd 214 |
. . . . . . . . . . 11
|
| 17 | olc 716 |
. . . . . . . . . . . . . 14
| |
| 18 | 17 | 2a1d 23 |
. . . . . . . . . . . . 13
|
| 19 | oveq1 6008 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 20 | 19 | oveq1d 6016 |
. . . . . . . . . . . . . . . . . . 19
|
| 21 | 20 | eqcoms 2232 |
. . . . . . . . . . . . . . . . . 18
|
| 22 | 21 | adantl 277 |
. . . . . . . . . . . . . . . . 17
|
| 23 | 2p1e3 9244 |
. . . . . . . . . . . . . . . . . 18
| |
| 24 | 23 | oveq1i 6011 |
. . . . . . . . . . . . . . . . 17
|
| 25 | 22, 24 | eqtrdi 2278 |
. . . . . . . . . . . . . . . 16
|
| 26 | 25 | eleq1d 2298 |
. . . . . . . . . . . . . . 15
|
| 27 | 3halfnz 9544 |
. . . . . . . . . . . . . . . 16
| |
| 28 | nn0z 9466 |
. . . . . . . . . . . . . . . . 17
| |
| 29 | 28 | pm2.24d 625 |
. . . . . . . . . . . . . . . 16
|
| 30 | 27, 29 | mpi 15 |
. . . . . . . . . . . . . . 15
|
| 31 | 26, 30 | biimtrdi 163 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | expcom 116 |
. . . . . . . . . . . . 13
|
| 33 | 18, 32 | jaoi 721 |
. . . . . . . . . . . 12
|
| 34 | 33 | com12 30 |
. . . . . . . . . . 11
|
| 35 | 16, 34 | sylbid 150 |
. . . . . . . . . 10
|
| 36 | 35 | com12 30 |
. . . . . . . . 9
|
| 37 | orc 717 |
. . . . . . . . . . 11
| |
| 38 | 37 | eqcoms 2232 |
. . . . . . . . . 10
|
| 39 | 38 | 2a1d 23 |
. . . . . . . . 9
|
| 40 | 36, 39 | jaoi 721 |
. . . . . . . 8
|
| 41 | 40 | com12 30 |
. . . . . . 7
|
| 42 | 6, 41 | sylbid 150 |
. . . . . 6
|
| 43 | 42 | imp 124 |
. . . . 5
|
| 44 | 2, 43 | sylbi 121 |
. . . 4
|
| 45 | oveq1 6008 |
. . . . . . . 8
| |
| 46 | 0p1e1 9224 |
. . . . . . . 8
| |
| 47 | 45, 46 | eqtrdi 2278 |
. . . . . . 7
|
| 48 | 47 | oveq1d 6016 |
. . . . . 6
|
| 49 | 48 | eleq1d 2298 |
. . . . 5
|
| 50 | halfnz 9543 |
. . . . . 6
| |
| 51 | nn0z 9466 |
. . . . . . 7
| |
| 52 | 51 | pm2.24d 625 |
. . . . . 6
|
| 53 | 50, 52 | mpi 15 |
. . . . 5
|
| 54 | 49, 53 | biimtrdi 163 |
. . . 4
|
| 55 | 44, 54 | jaoi 721 |
. . 3
|
| 56 | 1, 55 | sylbi 121 |
. 2
|
| 57 | 56 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 |
| This theorem is referenced by: nno 12417 nn0o 12418 |
| Copyright terms: Public domain | W3C validator |