ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o1gt2 Unicode version

Theorem nn0o1gt2 12331
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 9332 . . 3  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 elnnnn0c 9375 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
3 1z 9433 . . . . . . . 8  |-  1  e.  ZZ
4 nn0z 9427 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5 zleloe 9454 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N )
) )
63, 4, 5sylancr 414 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  <_  N  <->  ( 1  <  N  \/  1  =  N ) ) )
7 1zzd 9434 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  1  e.  ZZ )
8 zltp1le 9462 . . . . . . . . . . . . 13  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
97, 4, 8syl2anc 411 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 1  +  1 )  <_  N ) )
10 1p1e2 9188 . . . . . . . . . . . . . 14  |-  ( 1  +  1 )  =  2
1110breq1i 4066 . . . . . . . . . . . . 13  |-  ( ( 1  +  1 )  <_  N  <->  2  <_  N )
1211a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( 1  +  1 )  <_  N  <->  2  <_  N ) )
13 2z 9435 . . . . . . . . . . . . 13  |-  2  e.  ZZ
14 zleloe 9454 . . . . . . . . . . . . 13  |-  ( ( 2  e.  ZZ  /\  N  e.  ZZ )  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N )
) )
1513, 4, 14sylancr 414 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( 2  <_  N  <->  ( 2  <  N  \/  2  =  N ) ) )
169, 12, 153bitrd 214 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( 1  <  N  <->  ( 2  <  N  \/  2  =  N ) ) )
17 olc 713 . . . . . . . . . . . . . 14  |-  ( 2  <  N  ->  ( N  =  1  \/  2  <  N ) )
18172a1d 23 . . . . . . . . . . . . 13  |-  ( 2  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
19 oveq1 5974 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  =  2  ->  ( N  +  1 )  =  ( 2  +  1 ) )
2019oveq1d 5982 . . . . . . . . . . . . . . . . . . 19  |-  ( N  =  2  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2120eqcoms 2210 . . . . . . . . . . . . . . . . . 18  |-  ( 2  =  N  ->  (
( N  +  1 )  /  2 )  =  ( ( 2  +  1 )  / 
2 ) )
2221adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( ( 2  +  1 )  /  2 ) )
23 2p1e3 9205 . . . . . . . . . . . . . . . . . 18  |-  ( 2  +  1 )  =  3
2423oveq1i 5977 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  +  1 )  /  2 )  =  ( 3  /  2
)
2522, 24eqtrdi 2256 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( N  + 
1 )  /  2
)  =  ( 3  /  2 ) )
2625eleq1d 2276 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  <->  (
3  /  2 )  e.  NN0 ) )
27 3halfnz 9505 . . . . . . . . . . . . . . . 16  |-  -.  (
3  /  2 )  e.  ZZ
28 nn0z 9427 . . . . . . . . . . . . . . . . 17  |-  ( ( 3  /  2 )  e.  NN0  ->  ( 3  /  2 )  e.  ZZ )
2928pm2.24d 623 . . . . . . . . . . . . . . . 16  |-  ( ( 3  /  2 )  e.  NN0  ->  ( -.  ( 3  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
3027, 29mpi 15 . . . . . . . . . . . . . . 15  |-  ( ( 3  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
3126, 30biimtrdi 163 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
3231expcom 116 . . . . . . . . . . . . 13  |-  ( 2  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3318, 32jaoi 718 . . . . . . . . . . . 12  |-  ( ( 2  <  N  \/  2  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3433com12 30 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( ( 2  <  N  \/  2  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
3516, 34sylbid 150 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( 1  <  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
3635com12 30 . . . . . . . . 9  |-  ( 1  <  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
37 orc 714 . . . . . . . . . . 11  |-  ( N  =  1  ->  ( N  =  1  \/  2  <  N ) )
3837eqcoms 2210 . . . . . . . . . 10  |-  ( 1  =  N  ->  ( N  =  1  \/  2  <  N ) )
39382a1d 23 . . . . . . . . 9  |-  ( 1  =  N  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4036, 39jaoi 718 . . . . . . . 8  |-  ( ( 1  <  N  \/  1  =  N )  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
4140com12 30 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( 1  <  N  \/  1  =  N )  ->  ( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) ) )
426, 41sylbid 150 . . . . . 6  |-  ( N  e.  NN0  ->  ( 1  <_  N  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) ) )
4342imp 124 . . . . 5  |-  ( ( N  e.  NN0  /\  1  <_  N )  -> 
( ( ( N  +  1 )  / 
2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N
) ) )
442, 43sylbi 121 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
45 oveq1 5974 . . . . . . . 8  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
46 0p1e1 9185 . . . . . . . 8  |-  ( 0  +  1 )  =  1
4745, 46eqtrdi 2256 . . . . . . 7  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
4847oveq1d 5982 . . . . . 6  |-  ( N  =  0  ->  (
( N  +  1 )  /  2 )  =  ( 1  / 
2 ) )
4948eleq1d 2276 . . . . 5  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  <->  ( 1  /  2 )  e. 
NN0 ) )
50 halfnz 9504 . . . . . 6  |-  -.  (
1  /  2 )  e.  ZZ
51 nn0z 9427 . . . . . . 7  |-  ( ( 1  /  2 )  e.  NN0  ->  ( 1  /  2 )  e.  ZZ )
5251pm2.24d 623 . . . . . 6  |-  ( ( 1  /  2 )  e.  NN0  ->  ( -.  ( 1  /  2
)  e.  ZZ  ->  ( N  =  1  \/  2  <  N ) ) )
5350, 52mpi 15 . . . . 5  |-  ( ( 1  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) )
5449, 53biimtrdi 163 . . . 4  |-  ( N  =  0  ->  (
( ( N  + 
1 )  /  2
)  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5544, 54jaoi 718 . . 3  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  ( ( ( N  +  1 )  /  2 )  e. 
NN0  ->  ( N  =  1  \/  2  < 
N ) ) )
561, 55sylbi 121 . 2  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  /  2 )  e.  NN0  ->  ( N  =  1  \/  2  <  N ) ) )
5756imp 124 1  |-  ( ( N  e.  NN0  /\  ( ( N  + 
1 )  /  2
)  e.  NN0 )  ->  ( N  =  1  \/  2  <  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   0cc0 7960   1c1 7961    + caddc 7963    < clt 8142    <_ cle 8143    / cdiv 8780   NNcn 9071   2c2 9122   3c3 9123   NN0cn0 9330   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408
This theorem is referenced by:  nno  12332  nn0o  12333
  Copyright terms: Public domain W3C validator