ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 Unicode version

Theorem fldiv4p1lem1div2 10240
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8470 . . . 4  |-  1  <_  1
21a1i 9 . . 3  |-  ( N  =  3  ->  1  <_  1 )
3 oveq1 5849 . . . . . . 7  |-  ( N  =  3  ->  ( N  /  4 )  =  ( 3  /  4
) )
43fveq2d 5490 . . . . . 6  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
3  /  4 ) ) )
5 3lt4 9029 . . . . . . 7  |-  3  <  4
6 3nn0 9132 . . . . . . . 8  |-  3  e.  NN0
7 4nn 9020 . . . . . . . 8  |-  4  e.  NN
8 divfl0 10231 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  4  e.  NN )  ->  ( 3  <  4  <->  ( |_ `  ( 3  /  4 ) )  =  0 ) )
96, 7, 8mp2an 423 . . . . . . 7  |-  ( 3  <  4  <->  ( |_ `  ( 3  /  4
) )  =  0 )
105, 9mpbi 144 . . . . . 6  |-  ( |_
`  ( 3  / 
4 ) )  =  0
114, 10eqtrdi 2215 . . . . 5  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  0 )
1211oveq1d 5857 . . . 4  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 0  +  1 ) )
13 0p1e1 8971 . . . 4  |-  ( 0  +  1 )  =  1
1412, 13eqtrdi 2215 . . 3  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  1 )
15 oveq1 5849 . . . . . 6  |-  ( N  =  3  ->  ( N  -  1 )  =  ( 3  -  1 ) )
16 3m1e2 8977 . . . . . 6  |-  ( 3  -  1 )  =  2
1715, 16eqtrdi 2215 . . . . 5  |-  ( N  =  3  ->  ( N  -  1 )  =  2 )
1817oveq1d 5857 . . . 4  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  ( 2  / 
2 ) )
19 2div2e1 8989 . . . 4  |-  ( 2  /  2 )  =  1
2018, 19eqtrdi 2215 . . 3  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  1 )
212, 14, 203brtr4d 4014 . 2  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
22 uzp1 9499 . . 3  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) ) )
23 2re 8927 . . . . . . 7  |-  2  e.  RR
2423leidi 8383 . . . . . 6  |-  2  <_  2
2524a1i 9 . . . . 5  |-  ( N  =  5  ->  2  <_  2 )
26 oveq1 5849 . . . . . . . . 9  |-  ( N  =  5  ->  ( N  /  4 )  =  ( 5  /  4
) )
2726fveq2d 5490 . . . . . . . 8  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
5  /  4 ) ) )
28 df-5 8919 . . . . . . . . . . . 12  |-  5  =  ( 4  +  1 )
2928oveq1i 5852 . . . . . . . . . . 11  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
30 4cn 8935 . . . . . . . . . . . . 13  |-  4  e.  CC
31 ax-1cn 7846 . . . . . . . . . . . . 13  |-  1  e.  CC
32 4ap0 8956 . . . . . . . . . . . . 13  |-  4 #  0
3330, 31, 30, 32divdirapi 8665 . . . . . . . . . . . 12  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
3430, 32dividapi 8641 . . . . . . . . . . . . 13  |-  ( 4  /  4 )  =  1
3534oveq1i 5852 . . . . . . . . . . . 12  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
3633, 35eqtri 2186 . . . . . . . . . . 11  |-  ( ( 4  +  1 )  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3729, 36eqtri 2186 . . . . . . . . . 10  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3837fveq2i 5489 . . . . . . . . 9  |-  ( |_
`  ( 5  / 
4 ) )  =  ( |_ `  (
1  +  ( 1  /  4 ) ) )
39 1re 7898 . . . . . . . . . . 11  |-  1  e.  RR
40 0le1 8379 . . . . . . . . . . 11  |-  0  <_  1
41 4re 8934 . . . . . . . . . . 11  |-  4  e.  RR
42 4pos 8954 . . . . . . . . . . 11  |-  0  <  4
43 divge0 8768 . . . . . . . . . . 11  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
4439, 40, 41, 42, 43mp4an 424 . . . . . . . . . 10  |-  0  <_  ( 1  /  4
)
45 1lt4 9031 . . . . . . . . . . 11  |-  1  <  4
46 recgt1 8792 . . . . . . . . . . . 12  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
4741, 42, 46mp2an 423 . . . . . . . . . . 11  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
4845, 47mpbi 144 . . . . . . . . . 10  |-  ( 1  /  4 )  <  1
49 1z 9217 . . . . . . . . . . 11  |-  1  e.  ZZ
50 znq 9562 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  4  e.  NN )  ->  ( 1  /  4
)  e.  QQ )
5149, 7, 50mp2an 423 . . . . . . . . . . 11  |-  ( 1  /  4 )  e.  QQ
52 flqbi2 10226 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
5349, 51, 52mp2an 423 . . . . . . . . . 10  |-  ( ( |_ `  ( 1  +  ( 1  / 
4 ) ) )  =  1  <->  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 ) )
5444, 48, 53mpbir2an 932 . . . . . . . . 9  |-  ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1
5538, 54eqtri 2186 . . . . . . . 8  |-  ( |_
`  ( 5  / 
4 ) )  =  1
5627, 55eqtrdi 2215 . . . . . . 7  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  1 )
5756oveq1d 5857 . . . . . 6  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 1  +  1 ) )
58 1p1e2 8974 . . . . . 6  |-  ( 1  +  1 )  =  2
5957, 58eqtrdi 2215 . . . . 5  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  2 )
60 oveq1 5849 . . . . . . . 8  |-  ( N  =  5  ->  ( N  -  1 )  =  ( 5  -  1 ) )
6130, 31, 28mvrraddi 8115 . . . . . . . 8  |-  ( 5  -  1 )  =  4
6260, 61eqtrdi 2215 . . . . . . 7  |-  ( N  =  5  ->  ( N  -  1 )  =  4 )
6362oveq1d 5857 . . . . . 6  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  ( 4  / 
2 ) )
64 4d2e2 9017 . . . . . 6  |-  ( 4  /  2 )  =  2
6563, 64eqtrdi 2215 . . . . 5  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  2 )
6625, 59, 653brtr4d 4014 . . . 4  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
67 eluz2 9472 . . . . . 6  |-  ( N  e.  ( ZZ>= `  6
)  <->  ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N ) )
68 znq 9562 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  4  e.  NN )  ->  ( N  /  4
)  e.  QQ )
697, 68mpan2 422 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  QQ )
70 flqle 10213 . . . . . . . . . . 11  |-  ( ( N  /  4 )  e.  QQ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7169, 70syl 14 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7271adantr 274 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 ) )
7369flqcld 10212 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  ZZ )
7473zred 9313 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  RR )
75 zre 9195 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
76 id 19 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  RR )
7741a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4  e.  RR )
7832a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4 #  0 )
7976, 77, 78redivclapd 8731 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
8075, 79syl 14 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  RR )
8139a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  1  e.  RR )
8274, 80, 813jca 1167 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR ) )
8382adantr 274 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  e.  RR  /\  ( N  /  4
)  e.  RR  /\  1  e.  RR )
)
84 leadd1 8328 . . . . . . . . . 10  |-  ( ( ( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR )  ->  (
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8583, 84syl 14 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  <_  ( N  /  4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8672, 85mpbid 146 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  /  4 )  +  1 ) )
87 div4p1lem1div2 9110 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
8875, 87sylan 281 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
89 peano2re 8034 . . . . . . . . . . . 12  |-  ( ( |_ `  ( N  /  4 ) )  e.  RR  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
9074, 89syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
91 peano2re 8034 . . . . . . . . . . . 12  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
9280, 91syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  /  4
)  +  1 )  e.  RR )
93 peano2rem 8165 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
9493rehalfcld 9103 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
9575, 94syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  /  2 )  e.  RR )
9690, 92, 953jca 1167 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
9796adantr 274 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( |_
`  ( N  / 
4 ) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
98 letr 7981 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR )  ->  ( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
10086, 88, 99mp2and 430 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
1011003adant1 1005 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
10267, 101sylbi 120 . . . . 5  |-  ( N  e.  ( ZZ>= `  6
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
103 5p1e6 8994 . . . . . 6  |-  ( 5  +  1 )  =  6
104103fveq2i 5489 . . . . 5  |-  ( ZZ>= `  ( 5  +  1 ) )  =  (
ZZ>= `  6 )
105102, 104eleq2s 2261 . . . 4  |-  ( N  e.  ( ZZ>= `  (
5  +  1 ) )  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10666, 105jaoi 706 . . 3  |-  ( ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
10722, 106syl 14 . 2  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10821, 107jaoi 706 1  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   3c3 8909   4c4 8910   5c5 8911   6c6 8912   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   QQcq 9557   |_cfl 10203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fl 10205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator