ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 Unicode version

Theorem fldiv4p1lem1div2 10197
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8441 . . . 4  |-  1  <_  1
21a1i 9 . . 3  |-  ( N  =  3  ->  1  <_  1 )
3 oveq1 5828 . . . . . . 7  |-  ( N  =  3  ->  ( N  /  4 )  =  ( 3  /  4
) )
43fveq2d 5471 . . . . . 6  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
3  /  4 ) ) )
5 3lt4 8999 . . . . . . 7  |-  3  <  4
6 3nn0 9102 . . . . . . . 8  |-  3  e.  NN0
7 4nn 8990 . . . . . . . 8  |-  4  e.  NN
8 divfl0 10188 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  4  e.  NN )  ->  ( 3  <  4  <->  ( |_ `  ( 3  /  4 ) )  =  0 ) )
96, 7, 8mp2an 423 . . . . . . 7  |-  ( 3  <  4  <->  ( |_ `  ( 3  /  4
) )  =  0 )
105, 9mpbi 144 . . . . . 6  |-  ( |_
`  ( 3  / 
4 ) )  =  0
114, 10eqtrdi 2206 . . . . 5  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  0 )
1211oveq1d 5836 . . . 4  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 0  +  1 ) )
13 0p1e1 8941 . . . 4  |-  ( 0  +  1 )  =  1
1412, 13eqtrdi 2206 . . 3  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  1 )
15 oveq1 5828 . . . . . 6  |-  ( N  =  3  ->  ( N  -  1 )  =  ( 3  -  1 ) )
16 3m1e2 8947 . . . . . 6  |-  ( 3  -  1 )  =  2
1715, 16eqtrdi 2206 . . . . 5  |-  ( N  =  3  ->  ( N  -  1 )  =  2 )
1817oveq1d 5836 . . . 4  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  ( 2  / 
2 ) )
19 2div2e1 8959 . . . 4  |-  ( 2  /  2 )  =  1
2018, 19eqtrdi 2206 . . 3  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  1 )
212, 14, 203brtr4d 3996 . 2  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
22 uzp1 9466 . . 3  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) ) )
23 2re 8897 . . . . . . 7  |-  2  e.  RR
2423leidi 8354 . . . . . 6  |-  2  <_  2
2524a1i 9 . . . . 5  |-  ( N  =  5  ->  2  <_  2 )
26 oveq1 5828 . . . . . . . . 9  |-  ( N  =  5  ->  ( N  /  4 )  =  ( 5  /  4
) )
2726fveq2d 5471 . . . . . . . 8  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
5  /  4 ) ) )
28 df-5 8889 . . . . . . . . . . . 12  |-  5  =  ( 4  +  1 )
2928oveq1i 5831 . . . . . . . . . . 11  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
30 4cn 8905 . . . . . . . . . . . . 13  |-  4  e.  CC
31 ax-1cn 7819 . . . . . . . . . . . . 13  |-  1  e.  CC
32 4ap0 8926 . . . . . . . . . . . . 13  |-  4 #  0
3330, 31, 30, 32divdirapi 8636 . . . . . . . . . . . 12  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
3430, 32dividapi 8612 . . . . . . . . . . . . 13  |-  ( 4  /  4 )  =  1
3534oveq1i 5831 . . . . . . . . . . . 12  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
3633, 35eqtri 2178 . . . . . . . . . . 11  |-  ( ( 4  +  1 )  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3729, 36eqtri 2178 . . . . . . . . . 10  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3837fveq2i 5470 . . . . . . . . 9  |-  ( |_
`  ( 5  / 
4 ) )  =  ( |_ `  (
1  +  ( 1  /  4 ) ) )
39 1re 7871 . . . . . . . . . . 11  |-  1  e.  RR
40 0le1 8350 . . . . . . . . . . 11  |-  0  <_  1
41 4re 8904 . . . . . . . . . . 11  |-  4  e.  RR
42 4pos 8924 . . . . . . . . . . 11  |-  0  <  4
43 divge0 8738 . . . . . . . . . . 11  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
4439, 40, 41, 42, 43mp4an 424 . . . . . . . . . 10  |-  0  <_  ( 1  /  4
)
45 1lt4 9001 . . . . . . . . . . 11  |-  1  <  4
46 recgt1 8762 . . . . . . . . . . . 12  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
4741, 42, 46mp2an 423 . . . . . . . . . . 11  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
4845, 47mpbi 144 . . . . . . . . . 10  |-  ( 1  /  4 )  <  1
49 1z 9187 . . . . . . . . . . 11  |-  1  e.  ZZ
50 znq 9526 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  4  e.  NN )  ->  ( 1  /  4
)  e.  QQ )
5149, 7, 50mp2an 423 . . . . . . . . . . 11  |-  ( 1  /  4 )  e.  QQ
52 flqbi2 10183 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
5349, 51, 52mp2an 423 . . . . . . . . . 10  |-  ( ( |_ `  ( 1  +  ( 1  / 
4 ) ) )  =  1  <->  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 ) )
5444, 48, 53mpbir2an 927 . . . . . . . . 9  |-  ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1
5538, 54eqtri 2178 . . . . . . . 8  |-  ( |_
`  ( 5  / 
4 ) )  =  1
5627, 55eqtrdi 2206 . . . . . . 7  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  1 )
5756oveq1d 5836 . . . . . 6  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 1  +  1 ) )
58 1p1e2 8944 . . . . . 6  |-  ( 1  +  1 )  =  2
5957, 58eqtrdi 2206 . . . . 5  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  2 )
60 oveq1 5828 . . . . . . . 8  |-  ( N  =  5  ->  ( N  -  1 )  =  ( 5  -  1 ) )
6130, 31, 28mvrraddi 8086 . . . . . . . 8  |-  ( 5  -  1 )  =  4
6260, 61eqtrdi 2206 . . . . . . 7  |-  ( N  =  5  ->  ( N  -  1 )  =  4 )
6362oveq1d 5836 . . . . . 6  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  ( 4  / 
2 ) )
64 4d2e2 8987 . . . . . 6  |-  ( 4  /  2 )  =  2
6563, 64eqtrdi 2206 . . . . 5  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  2 )
6625, 59, 653brtr4d 3996 . . . 4  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
67 eluz2 9439 . . . . . 6  |-  ( N  e.  ( ZZ>= `  6
)  <->  ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N ) )
68 znq 9526 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  4  e.  NN )  ->  ( N  /  4
)  e.  QQ )
697, 68mpan2 422 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  QQ )
70 flqle 10170 . . . . . . . . . . 11  |-  ( ( N  /  4 )  e.  QQ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7169, 70syl 14 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7271adantr 274 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 ) )
7369flqcld 10169 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  ZZ )
7473zred 9280 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  RR )
75 zre 9165 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
76 id 19 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  RR )
7741a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4  e.  RR )
7832a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4 #  0 )
7976, 77, 78redivclapd 8701 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
8075, 79syl 14 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  RR )
8139a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  1  e.  RR )
8274, 80, 813jca 1162 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR ) )
8382adantr 274 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  e.  RR  /\  ( N  /  4
)  e.  RR  /\  1  e.  RR )
)
84 leadd1 8299 . . . . . . . . . 10  |-  ( ( ( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR )  ->  (
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8583, 84syl 14 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  <_  ( N  /  4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8672, 85mpbid 146 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  /  4 )  +  1 ) )
87 div4p1lem1div2 9080 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
8875, 87sylan 281 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
89 peano2re 8005 . . . . . . . . . . . 12  |-  ( ( |_ `  ( N  /  4 ) )  e.  RR  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
9074, 89syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
91 peano2re 8005 . . . . . . . . . . . 12  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
9280, 91syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  /  4
)  +  1 )  e.  RR )
93 peano2rem 8136 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
9493rehalfcld 9073 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
9575, 94syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  /  2 )  e.  RR )
9690, 92, 953jca 1162 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
9796adantr 274 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( |_
`  ( N  / 
4 ) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
98 letr 7954 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR )  ->  ( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
10086, 88, 99mp2and 430 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
1011003adant1 1000 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
10267, 101sylbi 120 . . . . 5  |-  ( N  e.  ( ZZ>= `  6
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
103 5p1e6 8964 . . . . . 6  |-  ( 5  +  1 )  =  6
104103fveq2i 5470 . . . . 5  |-  ( ZZ>= `  ( 5  +  1 ) )  =  (
ZZ>= `  6 )
105102, 104eleq2s 2252 . . . 4  |-  ( N  e.  ( ZZ>= `  (
5  +  1 ) )  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10666, 105jaoi 706 . . 3  |-  ( ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
10722, 106syl 14 . 2  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10821, 107jaoi 706 1  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3965   ` cfv 5169  (class class class)co 5821   RRcr 7725   0cc0 7726   1c1 7727    + caddc 7729    < clt 7906    <_ cle 7907    - cmin 8040   # cap 8450    / cdiv 8539   NNcn 8827   2c2 8878   3c3 8879   4c4 8880   5c5 8881   6c6 8882   NN0cn0 9084   ZZcz 9161   ZZ>=cuz 9433   QQcq 9521   |_cfl 10160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-5 8889  df-6 8890  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-fl 10162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator