ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 Unicode version

Theorem fldiv4p1lem1div2 9677
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8025 . . . 4  |-  1  <_  1
21a1i 9 . . 3  |-  ( N  =  3  ->  1  <_  1 )
3 oveq1 5641 . . . . . . 7  |-  ( N  =  3  ->  ( N  /  4 )  =  ( 3  /  4
) )
43fveq2d 5293 . . . . . 6  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
3  /  4 ) ) )
5 3lt4 8558 . . . . . . 7  |-  3  <  4
6 3nn0 8661 . . . . . . . 8  |-  3  e.  NN0
7 4nn 8549 . . . . . . . 8  |-  4  e.  NN
8 divfl0 9668 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  4  e.  NN )  ->  ( 3  <  4  <->  ( |_ `  ( 3  /  4 ) )  =  0 ) )
96, 7, 8mp2an 417 . . . . . . 7  |-  ( 3  <  4  <->  ( |_ `  ( 3  /  4
) )  =  0 )
105, 9mpbi 143 . . . . . 6  |-  ( |_
`  ( 3  / 
4 ) )  =  0
114, 10syl6eq 2136 . . . . 5  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  0 )
1211oveq1d 5649 . . . 4  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 0  +  1 ) )
13 0p1e1 8507 . . . 4  |-  ( 0  +  1 )  =  1
1412, 13syl6eq 2136 . . 3  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  1 )
15 oveq1 5641 . . . . . 6  |-  ( N  =  3  ->  ( N  -  1 )  =  ( 3  -  1 ) )
16 3m1e2 8512 . . . . . 6  |-  ( 3  -  1 )  =  2
1715, 16syl6eq 2136 . . . . 5  |-  ( N  =  3  ->  ( N  -  1 )  =  2 )
1817oveq1d 5649 . . . 4  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  ( 2  / 
2 ) )
19 2div2e1 8518 . . . 4  |-  ( 2  /  2 )  =  1
2018, 19syl6eq 2136 . . 3  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  1 )
212, 14, 203brtr4d 3867 . 2  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
22 uzp1 9021 . . 3  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) ) )
23 2re 8463 . . . . . . 7  |-  2  e.  RR
2423leidi 7939 . . . . . 6  |-  2  <_  2
2524a1i 9 . . . . 5  |-  ( N  =  5  ->  2  <_  2 )
26 oveq1 5641 . . . . . . . . 9  |-  ( N  =  5  ->  ( N  /  4 )  =  ( 5  /  4
) )
2726fveq2d 5293 . . . . . . . 8  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
5  /  4 ) ) )
28 df-5 8455 . . . . . . . . . . . 12  |-  5  =  ( 4  +  1 )
2928oveq1i 5644 . . . . . . . . . . 11  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
30 4cn 8471 . . . . . . . . . . . . 13  |-  4  e.  CC
31 ax-1cn 7417 . . . . . . . . . . . . 13  |-  1  e.  CC
32 4ap0 8492 . . . . . . . . . . . . 13  |-  4 #  0
3330, 31, 30, 32divdirapi 8210 . . . . . . . . . . . 12  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
3430, 32dividapi 8186 . . . . . . . . . . . . 13  |-  ( 4  /  4 )  =  1
3534oveq1i 5644 . . . . . . . . . . . 12  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
3633, 35eqtri 2108 . . . . . . . . . . 11  |-  ( ( 4  +  1 )  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3729, 36eqtri 2108 . . . . . . . . . 10  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3837fveq2i 5292 . . . . . . . . 9  |-  ( |_
`  ( 5  / 
4 ) )  =  ( |_ `  (
1  +  ( 1  /  4 ) ) )
39 1re 7466 . . . . . . . . . . 11  |-  1  e.  RR
40 0le1 7938 . . . . . . . . . . 11  |-  0  <_  1
41 4re 8470 . . . . . . . . . . 11  |-  4  e.  RR
42 4pos 8490 . . . . . . . . . . 11  |-  0  <  4
43 divge0 8306 . . . . . . . . . . 11  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
4439, 40, 41, 42, 43mp4an 418 . . . . . . . . . 10  |-  0  <_  ( 1  /  4
)
45 1lt4 8560 . . . . . . . . . . 11  |-  1  <  4
46 recgt1 8330 . . . . . . . . . . . 12  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
4741, 42, 46mp2an 417 . . . . . . . . . . 11  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
4845, 47mpbi 143 . . . . . . . . . 10  |-  ( 1  /  4 )  <  1
49 1z 8746 . . . . . . . . . . 11  |-  1  e.  ZZ
50 znq 9078 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  4  e.  NN )  ->  ( 1  /  4
)  e.  QQ )
5149, 7, 50mp2an 417 . . . . . . . . . . 11  |-  ( 1  /  4 )  e.  QQ
52 flqbi2 9663 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
5349, 51, 52mp2an 417 . . . . . . . . . 10  |-  ( ( |_ `  ( 1  +  ( 1  / 
4 ) ) )  =  1  <->  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 ) )
5444, 48, 53mpbir2an 888 . . . . . . . . 9  |-  ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1
5538, 54eqtri 2108 . . . . . . . 8  |-  ( |_
`  ( 5  / 
4 ) )  =  1
5627, 55syl6eq 2136 . . . . . . 7  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  1 )
5756oveq1d 5649 . . . . . 6  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 1  +  1 ) )
58 1p1e2 8509 . . . . . 6  |-  ( 1  +  1 )  =  2
5957, 58syl6eq 2136 . . . . 5  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  2 )
60 oveq1 5641 . . . . . . . 8  |-  ( N  =  5  ->  ( N  -  1 )  =  ( 5  -  1 ) )
6130, 31, 28mvrraddi 7678 . . . . . . . 8  |-  ( 5  -  1 )  =  4
6260, 61syl6eq 2136 . . . . . . 7  |-  ( N  =  5  ->  ( N  -  1 )  =  4 )
6362oveq1d 5649 . . . . . 6  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  ( 4  / 
2 ) )
64 4d2e2 8546 . . . . . 6  |-  ( 4  /  2 )  =  2
6563, 64syl6eq 2136 . . . . 5  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  2 )
6625, 59, 653brtr4d 3867 . . . 4  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
67 eluz2 8994 . . . . . 6  |-  ( N  e.  ( ZZ>= `  6
)  <->  ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N ) )
68 znq 9078 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  4  e.  NN )  ->  ( N  /  4
)  e.  QQ )
697, 68mpan2 416 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  QQ )
70 flqle 9650 . . . . . . . . . . 11  |-  ( ( N  /  4 )  e.  QQ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7169, 70syl 14 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7271adantr 270 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 ) )
7369flqcld 9649 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  ZZ )
7473zred 8838 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  RR )
75 zre 8724 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
76 id 19 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  RR )
7741a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4  e.  RR )
7832a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4 #  0 )
7976, 77, 78redivclapd 8273 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
8075, 79syl 14 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  RR )
8139a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  1  e.  RR )
8274, 80, 813jca 1123 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR ) )
8382adantr 270 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  e.  RR  /\  ( N  /  4
)  e.  RR  /\  1  e.  RR )
)
84 leadd1 7887 . . . . . . . . . 10  |-  ( ( ( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR )  ->  (
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8583, 84syl 14 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  <_  ( N  /  4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8672, 85mpbid 145 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  /  4 )  +  1 ) )
87 div4p1lem1div2 8639 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
8875, 87sylan 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
89 peano2re 7597 . . . . . . . . . . . 12  |-  ( ( |_ `  ( N  /  4 ) )  e.  RR  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
9074, 89syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
91 peano2re 7597 . . . . . . . . . . . 12  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
9280, 91syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  /  4
)  +  1 )  e.  RR )
93 peano2rem 7728 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
9493rehalfcld 8632 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
9575, 94syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  /  2 )  e.  RR )
9690, 92, 953jca 1123 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
9796adantr 270 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( |_
`  ( N  / 
4 ) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
98 letr 7547 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR )  ->  ( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
10086, 88, 99mp2and 424 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
1011003adant1 961 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
10267, 101sylbi 119 . . . . 5  |-  ( N  e.  ( ZZ>= `  6
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
103 5p1e6 8523 . . . . . 6  |-  ( 5  +  1 )  =  6
104103fveq2i 5292 . . . . 5  |-  ( ZZ>= `  ( 5  +  1 ) )  =  (
ZZ>= `  6 )
105102, 104eleq2s 2182 . . . 4  |-  ( N  e.  ( ZZ>= `  (
5  +  1 ) )  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10666, 105jaoi 671 . . 3  |-  ( ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
10722, 106syl 14 . 2  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10821, 107jaoi 671 1  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438   class class class wbr 3837   ` cfv 5002  (class class class)co 5634   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    < clt 7501    <_ cle 7502    - cmin 7632   # cap 8034    / cdiv 8113   NNcn 8394   2c2 8444   3c3 8445   4c4 8446   5c5 8447   6c6 8448   NN0cn0 8643   ZZcz 8720   ZZ>=cuz 8988   QQcq 9073   |_cfl 9640
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-5 8455  df-6 8456  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fl 9642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator