ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 Unicode version

Theorem fldiv4p1lem1div2 10291
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8519 . . . 4  |-  1  <_  1
21a1i 9 . . 3  |-  ( N  =  3  ->  1  <_  1 )
3 oveq1 5876 . . . . . . 7  |-  ( N  =  3  ->  ( N  /  4 )  =  ( 3  /  4
) )
43fveq2d 5515 . . . . . 6  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
3  /  4 ) ) )
5 3lt4 9080 . . . . . . 7  |-  3  <  4
6 3nn0 9183 . . . . . . . 8  |-  3  e.  NN0
7 4nn 9071 . . . . . . . 8  |-  4  e.  NN
8 divfl0 10282 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  4  e.  NN )  ->  ( 3  <  4  <->  ( |_ `  ( 3  /  4 ) )  =  0 ) )
96, 7, 8mp2an 426 . . . . . . 7  |-  ( 3  <  4  <->  ( |_ `  ( 3  /  4
) )  =  0 )
105, 9mpbi 145 . . . . . 6  |-  ( |_
`  ( 3  / 
4 ) )  =  0
114, 10eqtrdi 2226 . . . . 5  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  0 )
1211oveq1d 5884 . . . 4  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 0  +  1 ) )
13 0p1e1 9022 . . . 4  |-  ( 0  +  1 )  =  1
1412, 13eqtrdi 2226 . . 3  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  1 )
15 oveq1 5876 . . . . . 6  |-  ( N  =  3  ->  ( N  -  1 )  =  ( 3  -  1 ) )
16 3m1e2 9028 . . . . . 6  |-  ( 3  -  1 )  =  2
1715, 16eqtrdi 2226 . . . . 5  |-  ( N  =  3  ->  ( N  -  1 )  =  2 )
1817oveq1d 5884 . . . 4  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  ( 2  / 
2 ) )
19 2div2e1 9040 . . . 4  |-  ( 2  /  2 )  =  1
2018, 19eqtrdi 2226 . . 3  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  1 )
212, 14, 203brtr4d 4032 . 2  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
22 uzp1 9550 . . 3  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) ) )
23 2re 8978 . . . . . . 7  |-  2  e.  RR
2423leidi 8432 . . . . . 6  |-  2  <_  2
2524a1i 9 . . . . 5  |-  ( N  =  5  ->  2  <_  2 )
26 oveq1 5876 . . . . . . . . 9  |-  ( N  =  5  ->  ( N  /  4 )  =  ( 5  /  4
) )
2726fveq2d 5515 . . . . . . . 8  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
5  /  4 ) ) )
28 df-5 8970 . . . . . . . . . . . 12  |-  5  =  ( 4  +  1 )
2928oveq1i 5879 . . . . . . . . . . 11  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
30 4cn 8986 . . . . . . . . . . . . 13  |-  4  e.  CC
31 ax-1cn 7895 . . . . . . . . . . . . 13  |-  1  e.  CC
32 4ap0 9007 . . . . . . . . . . . . 13  |-  4 #  0
3330, 31, 30, 32divdirapi 8715 . . . . . . . . . . . 12  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
3430, 32dividapi 8691 . . . . . . . . . . . . 13  |-  ( 4  /  4 )  =  1
3534oveq1i 5879 . . . . . . . . . . . 12  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
3633, 35eqtri 2198 . . . . . . . . . . 11  |-  ( ( 4  +  1 )  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3729, 36eqtri 2198 . . . . . . . . . 10  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3837fveq2i 5514 . . . . . . . . 9  |-  ( |_
`  ( 5  / 
4 ) )  =  ( |_ `  (
1  +  ( 1  /  4 ) ) )
39 1re 7947 . . . . . . . . . . 11  |-  1  e.  RR
40 0le1 8428 . . . . . . . . . . 11  |-  0  <_  1
41 4re 8985 . . . . . . . . . . 11  |-  4  e.  RR
42 4pos 9005 . . . . . . . . . . 11  |-  0  <  4
43 divge0 8819 . . . . . . . . . . 11  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
4439, 40, 41, 42, 43mp4an 427 . . . . . . . . . 10  |-  0  <_  ( 1  /  4
)
45 1lt4 9082 . . . . . . . . . . 11  |-  1  <  4
46 recgt1 8843 . . . . . . . . . . . 12  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
4741, 42, 46mp2an 426 . . . . . . . . . . 11  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
4845, 47mpbi 145 . . . . . . . . . 10  |-  ( 1  /  4 )  <  1
49 1z 9268 . . . . . . . . . . 11  |-  1  e.  ZZ
50 znq 9613 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  4  e.  NN )  ->  ( 1  /  4
)  e.  QQ )
5149, 7, 50mp2an 426 . . . . . . . . . . 11  |-  ( 1  /  4 )  e.  QQ
52 flqbi2 10277 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
5349, 51, 52mp2an 426 . . . . . . . . . 10  |-  ( ( |_ `  ( 1  +  ( 1  / 
4 ) ) )  =  1  <->  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 ) )
5444, 48, 53mpbir2an 942 . . . . . . . . 9  |-  ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1
5538, 54eqtri 2198 . . . . . . . 8  |-  ( |_
`  ( 5  / 
4 ) )  =  1
5627, 55eqtrdi 2226 . . . . . . 7  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  1 )
5756oveq1d 5884 . . . . . 6  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 1  +  1 ) )
58 1p1e2 9025 . . . . . 6  |-  ( 1  +  1 )  =  2
5957, 58eqtrdi 2226 . . . . 5  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  2 )
60 oveq1 5876 . . . . . . . 8  |-  ( N  =  5  ->  ( N  -  1 )  =  ( 5  -  1 ) )
6130, 31, 28mvrraddi 8164 . . . . . . . 8  |-  ( 5  -  1 )  =  4
6260, 61eqtrdi 2226 . . . . . . 7  |-  ( N  =  5  ->  ( N  -  1 )  =  4 )
6362oveq1d 5884 . . . . . 6  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  ( 4  / 
2 ) )
64 4d2e2 9068 . . . . . 6  |-  ( 4  /  2 )  =  2
6563, 64eqtrdi 2226 . . . . 5  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  2 )
6625, 59, 653brtr4d 4032 . . . 4  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
67 eluz2 9523 . . . . . 6  |-  ( N  e.  ( ZZ>= `  6
)  <->  ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N ) )
68 znq 9613 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  4  e.  NN )  ->  ( N  /  4
)  e.  QQ )
697, 68mpan2 425 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  QQ )
70 flqle 10264 . . . . . . . . . . 11  |-  ( ( N  /  4 )  e.  QQ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7169, 70syl 14 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7271adantr 276 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 ) )
7369flqcld 10263 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  ZZ )
7473zred 9364 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  RR )
75 zre 9246 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
76 id 19 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  RR )
7741a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4  e.  RR )
7832a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4 #  0 )
7976, 77, 78redivclapd 8781 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
8075, 79syl 14 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  RR )
8139a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  1  e.  RR )
8274, 80, 813jca 1177 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR ) )
8382adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  e.  RR  /\  ( N  /  4
)  e.  RR  /\  1  e.  RR )
)
84 leadd1 8377 . . . . . . . . . 10  |-  ( ( ( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR )  ->  (
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8583, 84syl 14 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  <_  ( N  /  4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8672, 85mpbid 147 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  /  4 )  +  1 ) )
87 div4p1lem1div2 9161 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
8875, 87sylan 283 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
89 peano2re 8083 . . . . . . . . . . . 12  |-  ( ( |_ `  ( N  /  4 ) )  e.  RR  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
9074, 89syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
91 peano2re 8083 . . . . . . . . . . . 12  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
9280, 91syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  /  4
)  +  1 )  e.  RR )
93 peano2rem 8214 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
9493rehalfcld 9154 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
9575, 94syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  /  2 )  e.  RR )
9690, 92, 953jca 1177 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
9796adantr 276 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( |_
`  ( N  / 
4 ) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
98 letr 8030 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR )  ->  ( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
10086, 88, 99mp2and 433 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
1011003adant1 1015 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
10267, 101sylbi 121 . . . . 5  |-  ( N  e.  ( ZZ>= `  6
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
103 5p1e6 9045 . . . . . 6  |-  ( 5  +  1 )  =  6
104103fveq2i 5514 . . . . 5  |-  ( ZZ>= `  ( 5  +  1 ) )  =  (
ZZ>= `  6 )
105102, 104eleq2s 2272 . . . 4  |-  ( N  e.  ( ZZ>= `  (
5  +  1 ) )  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10666, 105jaoi 716 . . 3  |-  ( ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
10722, 106syl 14 . 2  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10821, 107jaoi 716 1  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983    - cmin 8118   # cap 8528    / cdiv 8618   NNcn 8908   2c2 8959   3c3 8960   4c4 8961   5c5 8962   6c6 8963   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   QQcq 9608   |_cfl 10254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fl 10256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator