ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4p1lem1div2 Unicode version

Theorem fldiv4p1lem1div2 10374
Description: The floor of an integer equal to 3 or greater than 4, increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
fldiv4p1lem1div2  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )

Proof of Theorem fldiv4p1lem1div2
StepHypRef Expression
1 1le1 8591 . . . 4  |-  1  <_  1
21a1i 9 . . 3  |-  ( N  =  3  ->  1  <_  1 )
3 oveq1 5925 . . . . . . 7  |-  ( N  =  3  ->  ( N  /  4 )  =  ( 3  /  4
) )
43fveq2d 5558 . . . . . 6  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
3  /  4 ) ) )
5 3lt4 9154 . . . . . . 7  |-  3  <  4
6 3nn0 9258 . . . . . . . 8  |-  3  e.  NN0
7 4nn 9145 . . . . . . . 8  |-  4  e.  NN
8 divfl0 10365 . . . . . . . 8  |-  ( ( 3  e.  NN0  /\  4  e.  NN )  ->  ( 3  <  4  <->  ( |_ `  ( 3  /  4 ) )  =  0 ) )
96, 7, 8mp2an 426 . . . . . . 7  |-  ( 3  <  4  <->  ( |_ `  ( 3  /  4
) )  =  0 )
105, 9mpbi 145 . . . . . 6  |-  ( |_
`  ( 3  / 
4 ) )  =  0
114, 10eqtrdi 2242 . . . . 5  |-  ( N  =  3  ->  ( |_ `  ( N  / 
4 ) )  =  0 )
1211oveq1d 5933 . . . 4  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 0  +  1 ) )
13 0p1e1 9096 . . . 4  |-  ( 0  +  1 )  =  1
1412, 13eqtrdi 2242 . . 3  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  1 )
15 oveq1 5925 . . . . . 6  |-  ( N  =  3  ->  ( N  -  1 )  =  ( 3  -  1 ) )
16 3m1e2 9102 . . . . . 6  |-  ( 3  -  1 )  =  2
1715, 16eqtrdi 2242 . . . . 5  |-  ( N  =  3  ->  ( N  -  1 )  =  2 )
1817oveq1d 5933 . . . 4  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  ( 2  / 
2 ) )
19 2div2e1 9114 . . . 4  |-  ( 2  /  2 )  =  1
2018, 19eqtrdi 2242 . . 3  |-  ( N  =  3  ->  (
( N  -  1 )  /  2 )  =  1 )
212, 14, 203brtr4d 4061 . 2  |-  ( N  =  3  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
22 uzp1 9626 . . 3  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) ) )
23 2re 9052 . . . . . . 7  |-  2  e.  RR
2423leidi 8504 . . . . . 6  |-  2  <_  2
2524a1i 9 . . . . 5  |-  ( N  =  5  ->  2  <_  2 )
26 oveq1 5925 . . . . . . . . 9  |-  ( N  =  5  ->  ( N  /  4 )  =  ( 5  /  4
) )
2726fveq2d 5558 . . . . . . . 8  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  ( |_ `  (
5  /  4 ) ) )
28 df-5 9044 . . . . . . . . . . . 12  |-  5  =  ( 4  +  1 )
2928oveq1i 5928 . . . . . . . . . . 11  |-  ( 5  /  4 )  =  ( ( 4  +  1 )  /  4
)
30 4cn 9060 . . . . . . . . . . . . 13  |-  4  e.  CC
31 ax-1cn 7965 . . . . . . . . . . . . 13  |-  1  e.  CC
32 4ap0 9081 . . . . . . . . . . . . 13  |-  4 #  0
3330, 31, 30, 32divdirapi 8788 . . . . . . . . . . . 12  |-  ( ( 4  +  1 )  /  4 )  =  ( ( 4  / 
4 )  +  ( 1  /  4 ) )
3430, 32dividapi 8764 . . . . . . . . . . . . 13  |-  ( 4  /  4 )  =  1
3534oveq1i 5928 . . . . . . . . . . . 12  |-  ( ( 4  /  4 )  +  ( 1  / 
4 ) )  =  ( 1  +  ( 1  /  4 ) )
3633, 35eqtri 2214 . . . . . . . . . . 11  |-  ( ( 4  +  1 )  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3729, 36eqtri 2214 . . . . . . . . . 10  |-  ( 5  /  4 )  =  ( 1  +  ( 1  /  4 ) )
3837fveq2i 5557 . . . . . . . . 9  |-  ( |_
`  ( 5  / 
4 ) )  =  ( |_ `  (
1  +  ( 1  /  4 ) ) )
39 1re 8018 . . . . . . . . . . 11  |-  1  e.  RR
40 0le1 8500 . . . . . . . . . . 11  |-  0  <_  1
41 4re 9059 . . . . . . . . . . 11  |-  4  e.  RR
42 4pos 9079 . . . . . . . . . . 11  |-  0  <  4
43 divge0 8892 . . . . . . . . . . 11  |-  ( ( ( 1  e.  RR  /\  0  <_  1 )  /\  ( 4  e.  RR  /\  0  <  4 ) )  -> 
0  <_  ( 1  /  4 ) )
4439, 40, 41, 42, 43mp4an 427 . . . . . . . . . 10  |-  0  <_  ( 1  /  4
)
45 1lt4 9156 . . . . . . . . . . 11  |-  1  <  4
46 recgt1 8916 . . . . . . . . . . . 12  |-  ( ( 4  e.  RR  /\  0  <  4 )  -> 
( 1  <  4  <->  ( 1  /  4 )  <  1 ) )
4741, 42, 46mp2an 426 . . . . . . . . . . 11  |-  ( 1  <  4  <->  ( 1  /  4 )  <  1 )
4845, 47mpbi 145 . . . . . . . . . 10  |-  ( 1  /  4 )  <  1
49 1z 9343 . . . . . . . . . . 11  |-  1  e.  ZZ
50 znq 9689 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  4  e.  NN )  ->  ( 1  /  4
)  e.  QQ )
5149, 7, 50mp2an 426 . . . . . . . . . . 11  |-  ( 1  /  4 )  e.  QQ
52 flqbi2 10360 . . . . . . . . . . 11  |-  ( ( 1  e.  ZZ  /\  ( 1  /  4
)  e.  QQ )  ->  ( ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1  <->  ( 0  <_ 
( 1  /  4
)  /\  ( 1  /  4 )  <  1 ) ) )
5349, 51, 52mp2an 426 . . . . . . . . . 10  |-  ( ( |_ `  ( 1  +  ( 1  / 
4 ) ) )  =  1  <->  ( 0  <_  ( 1  / 
4 )  /\  (
1  /  4 )  <  1 ) )
5444, 48, 53mpbir2an 944 . . . . . . . . 9  |-  ( |_
`  ( 1  +  ( 1  /  4
) ) )  =  1
5538, 54eqtri 2214 . . . . . . . 8  |-  ( |_
`  ( 5  / 
4 ) )  =  1
5627, 55eqtrdi 2242 . . . . . . 7  |-  ( N  =  5  ->  ( |_ `  ( N  / 
4 ) )  =  1 )
5756oveq1d 5933 . . . . . 6  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  ( 1  +  1 ) )
58 1p1e2 9099 . . . . . 6  |-  ( 1  +  1 )  =  2
5957, 58eqtrdi 2242 . . . . 5  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  =  2 )
60 oveq1 5925 . . . . . . . 8  |-  ( N  =  5  ->  ( N  -  1 )  =  ( 5  -  1 ) )
6130, 31, 28mvrraddi 8236 . . . . . . . 8  |-  ( 5  -  1 )  =  4
6260, 61eqtrdi 2242 . . . . . . 7  |-  ( N  =  5  ->  ( N  -  1 )  =  4 )
6362oveq1d 5933 . . . . . 6  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  ( 4  / 
2 ) )
64 4d2e2 9142 . . . . . 6  |-  ( 4  /  2 )  =  2
6563, 64eqtrdi 2242 . . . . 5  |-  ( N  =  5  ->  (
( N  -  1 )  /  2 )  =  2 )
6625, 59, 653brtr4d 4061 . . . 4  |-  ( N  =  5  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
67 eluz2 9598 . . . . . 6  |-  ( N  e.  ( ZZ>= `  6
)  <->  ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N ) )
68 znq 9689 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  4  e.  NN )  ->  ( N  /  4
)  e.  QQ )
697, 68mpan2 425 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  QQ )
70 flqle 10347 . . . . . . . . . . 11  |-  ( ( N  /  4 )  e.  QQ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7169, 70syl 14 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  <_ 
( N  /  4
) )
7271adantr 276 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 ) )
7369flqcld 10346 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  ZZ )
7473zred 9439 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( |_ `  ( N  / 
4 ) )  e.  RR )
75 zre 9321 . . . . . . . . . . . . 13  |-  ( N  e.  ZZ  ->  N  e.  RR )
76 id 19 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  N  e.  RR )
7741a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4  e.  RR )
7832a1i 9 . . . . . . . . . . . . . 14  |-  ( N  e.  RR  ->  4 #  0 )
7976, 77, 78redivclapd 8854 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  /  4 )  e.  RR )
8075, 79syl 14 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  /  4 )  e.  RR )
8139a1i 9 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  1  e.  RR )
8274, 80, 813jca 1179 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR ) )
8382adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  e.  RR  /\  ( N  /  4
)  e.  RR  /\  1  e.  RR )
)
84 leadd1 8449 . . . . . . . . . 10  |-  ( ( ( |_ `  ( N  /  4 ) )  e.  RR  /\  ( N  /  4 )  e.  RR  /\  1  e.  RR )  ->  (
( |_ `  ( N  /  4 ) )  <_  ( N  / 
4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8583, 84syl 14 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  <_  ( N  /  4 )  <->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  /  4
)  +  1 ) ) )
8672, 85mpbid 147 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  /  4 )  +  1 ) )
87 div4p1lem1div2 9236 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
8875, 87sylan 283 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( N  / 
4 )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
89 peano2re 8155 . . . . . . . . . . . 12  |-  ( ( |_ `  ( N  /  4 ) )  e.  RR  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
9074, 89syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  e.  RR )
91 peano2re 8155 . . . . . . . . . . . 12  |-  ( ( N  /  4 )  e.  RR  ->  (
( N  /  4
)  +  1 )  e.  RR )
9280, 91syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  /  4
)  +  1 )  e.  RR )
93 peano2rem 8286 . . . . . . . . . . . . 13  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
9493rehalfcld 9229 . . . . . . . . . . . 12  |-  ( N  e.  RR  ->  (
( N  -  1 )  /  2 )  e.  RR )
9575, 94syl 14 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  /  2 )  e.  RR )
9690, 92, 953jca 1179 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
9796adantr 276 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( |_
`  ( N  / 
4 ) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR ) )
98 letr 8102 . . . . . . . . 9  |-  ( ( ( ( |_ `  ( N  /  4
) )  +  1 )  e.  RR  /\  ( ( N  / 
4 )  +  1 )  e.  RR  /\  ( ( N  - 
1 )  /  2
)  e.  RR )  ->  ( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
9997, 98syl 14 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( ( ( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  / 
4 )  +  1 )  /\  ( ( N  /  4 )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) ) )
10086, 88, 99mp2and 433 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  6  <_  N )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
1011003adant1 1017 . . . . . 6  |-  ( ( 6  e.  ZZ  /\  N  e.  ZZ  /\  6  <_  N )  ->  (
( |_ `  ( N  /  4 ) )  +  1 )  <_ 
( ( N  - 
1 )  /  2
) )
10267, 101sylbi 121 . . . . 5  |-  ( N  e.  ( ZZ>= `  6
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
103 5p1e6 9119 . . . . . 6  |-  ( 5  +  1 )  =  6
104103fveq2i 5557 . . . . 5  |-  ( ZZ>= `  ( 5  +  1 ) )  =  (
ZZ>= `  6 )
105102, 104eleq2s 2288 . . . 4  |-  ( N  e.  ( ZZ>= `  (
5  +  1 ) )  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10666, 105jaoi 717 . . 3  |-  ( ( N  =  5  \/  N  e.  ( ZZ>= `  ( 5  +  1 ) ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
10722, 106syl 14 . 2  |-  ( N  e.  ( ZZ>= `  5
)  ->  ( ( |_ `  ( N  / 
4 ) )  +  1 )  <_  (
( N  -  1 )  /  2 ) )
10821, 107jaoi 717 1  |-  ( ( N  =  3  \/  N  e.  ( ZZ>= ` 
5 ) )  -> 
( ( |_ `  ( N  /  4
) )  +  1 )  <_  ( ( N  -  1 )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    < clt 8054    <_ cle 8055    - cmin 8190   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   3c3 9034   4c4 9035   5c5 9036   6c6 9037   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   |_cfl 10337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fl 10339
This theorem is referenced by:  gausslemma2dlem0f  15170
  Copyright terms: Public domain W3C validator