Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fac2 | Unicode version |
Description: The factorial of 2. (Contributed by NM, 17-Mar-2005.) |
Ref | Expression |
---|---|
fac2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8951 | . . 3 | |
2 | 1 | fveq2i 5510 | . 2 |
3 | 1nn0 9165 | . . . 4 | |
4 | facp1 10678 | . . . 4 | |
5 | 3, 4 | ax-mp 5 | . . 3 |
6 | fac1 10677 | . . . . 5 | |
7 | 1p1e2 9009 | . . . . 5 | |
8 | 6, 7 | oveq12i 5877 | . . . 4 |
9 | 2cn 8963 | . . . . 5 | |
10 | 9 | mulid2i 7935 | . . . 4 |
11 | 8, 10 | eqtri 2196 | . . 3 |
12 | 5, 11 | eqtri 2196 | . 2 |
13 | 2, 12 | eqtri 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wcel 2146 cfv 5208 (class class class)co 5865 c1 7787 caddc 7789 cmul 7791 c2 8943 cn0 9149 cfa 10673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-2 8951 df-n0 9150 df-z 9227 df-uz 9502 df-seqfrec 10416 df-fac 10674 |
This theorem is referenced by: fac3 10680 bcn2 10712 4bc2eq6 10722 ef4p 11670 efgt1p2 11671 dveflem 13767 |
Copyright terms: Public domain | W3C validator |