ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasgrp Unicode version

Theorem imasgrp 13317
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasgrp.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasgrp.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
imasgrp.f  |-  ( ph  ->  F : V -onto-> B
)
imasgrp.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
imasgrp.r  |-  ( ph  ->  R  e.  Grp )
imasgrp.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
imasgrp  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Distinct variable groups:    q, p, B   
a, b, p, q,
ph    R, p, q    F, a, b, p, q    .+ , p, q    U, a, b, p, q    V, a, b, p, q    .0. , p, q
Allowed substitution hints:    B( a, b)    .+ ( a, b)    R( a, b)    .0. ( a, b)

Proof of Theorem imasgrp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . 2  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasgrp.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasgrp.p . 2  |-  ( ph  ->  .+  =  ( +g  `  R ) )
4 imasgrp.f . 2  |-  ( ph  ->  F : V -onto-> B
)
5 imasgrp.e . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
6 imasgrp.r . 2  |-  ( ph  ->  R  e.  Grp )
763ad2ant1 1020 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  R  e.  Grp )
8 simp2 1000 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  x  e.  V )
923ad2ant1 1020 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  V  =  ( Base `  R )
)
108, 9eleqtrd 2275 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  x  e.  ( Base `  R )
)
11 simp3 1001 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  y  e.  V )
1211, 9eleqtrd 2275 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  y  e.  ( Base `  R )
)
13 eqid 2196 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2196 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
1513, 14grpcl 13210 . . . 4  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  (
x ( +g  `  R
) y )  e.  ( Base `  R
) )
167, 10, 12, 15syl3anc 1249 . . 3  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( +g  `  R ) y )  e.  (
Base `  R )
)
1733ad2ant1 1020 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  .+  =  ( +g  `  R ) )
1817oveqd 5942 . . 3  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  =  ( x ( +g  `  R
) y ) )
1916, 18, 93eltr4d 2280 . 2  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
206adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  R  e.  Grp )
21103adant3r3 1216 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  x  e.  ( Base `  R ) )
22123adant3r3 1216 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
y  e.  ( Base `  R ) )
23 simpr3 1007 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  V )
242adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  V  =  ( Base `  R ) )
2523, 24eleqtrd 2275 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  ( Base `  R ) )
2613, 14grpass 13211 . . . . 5  |-  ( ( R  e.  Grp  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y ) ( +g  `  R ) z )  =  ( x ( +g  `  R ) ( y ( +g  `  R ) z ) ) )
2720, 21, 22, 25, 26syl13anc 1251 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x ( +g  `  R ) y ) ( +g  `  R ) z )  =  ( x ( +g  `  R ) ( y ( +g  `  R ) z ) ) )
283adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  .+  =  ( +g  `  R ) )
29183adant3r3 1216 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  R
) y ) )
30 eqidd 2197 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  =  z )
3128, 29, 30oveq123d 5946 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( ( x ( +g  `  R
) y ) ( +g  `  R ) z ) )
32 eqidd 2197 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  x  =  x )
3328oveqd 5942 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( y  .+  z
)  =  ( y ( +g  `  R
) z ) )
3428, 32, 33oveq123d 5946 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  (
y  .+  z )
)  =  ( x ( +g  `  R
) ( y ( +g  `  R ) z ) ) )
3527, 31, 343eqtr4d 2239 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
3635fveq2d 5565 . 2  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( x  .+  ( y  .+  z
) ) ) )
37 imasgrp.z . . . . 5  |-  .0.  =  ( 0g `  R )
3813, 37grpidcl 13231 . . . 4  |-  ( R  e.  Grp  ->  .0.  e.  ( Base `  R
) )
396, 38syl 14 . . 3  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
4039, 2eleqtrrd 2276 . 2  |-  ( ph  ->  .0.  e.  V )
413adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .+  =  ( +g  `  R ) )
4241oveqd 5942 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  R ) x ) )
432eleq2d 2266 . . . . . 6  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
4443biimpa 296 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
4513, 14, 37grplid 13233 . . . . 5  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
(  .0.  ( +g  `  R ) x )  =  x )
466, 44, 45syl2an2r 595 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  ( +g  `  R
) x )  =  x )
4742, 46eqtrd 2229 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  =  x )
4847fveq2d 5565 . 2  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x
) )
49 eqid 2196 . . . . 5  |-  ( invg `  R )  =  ( invg `  R )
5013, 49grpinvcl 13250 . . . 4  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
( ( invg `  R ) `  x
)  e.  ( Base `  R ) )
516, 44, 50syl2an2r 595 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( invg `  R ) `  x
)  e.  ( Base `  R ) )
522adantr 276 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  V  =  ( Base `  R
) )
5351, 52eleqtrrd 2276 . 2  |-  ( (
ph  /\  x  e.  V )  ->  (
( invg `  R ) `  x
)  e.  V )
5441oveqd 5942 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( ( invg `  R ) `  x
)  .+  x )  =  ( ( ( invg `  R
) `  x )
( +g  `  R ) x ) )
5513, 14, 37, 49grplinv 13252 . . . . 5  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
( ( ( invg `  R ) `
 x ) ( +g  `  R ) x )  =  .0.  )
566, 44, 55syl2an2r 595 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( ( invg `  R ) `  x
) ( +g  `  R
) x )  =  .0.  )
5754, 56eqtrd 2229 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( ( invg `  R ) `  x
)  .+  x )  =  .0.  )
5857fveq2d 5565 . 2  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( (
( invg `  R ) `  x
)  .+  x )
)  =  ( F `
 .0.  ) )
591, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58imasgrp2 13316 1  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   -onto->wfo 5257   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   0gc0g 12958    "s cimas 13001   Grpcgrp 13202   invgcminusg 13203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-0g 12960  df-iimas 13004  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206
This theorem is referenced by:  imasgrpf1  13318  imasabl  13542  imasring  13696
  Copyright terms: Public domain W3C validator