ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasgrp Unicode version

Theorem imasgrp 13562
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasgrp.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasgrp.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
imasgrp.f  |-  ( ph  ->  F : V -onto-> B
)
imasgrp.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
imasgrp.r  |-  ( ph  ->  R  e.  Grp )
imasgrp.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
imasgrp  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Distinct variable groups:    q, p, B   
a, b, p, q,
ph    R, p, q    F, a, b, p, q    .+ , p, q    U, a, b, p, q    V, a, b, p, q    .0. , p, q
Allowed substitution hints:    B( a, b)    .+ ( a, b)    R( a, b)    .0. ( a, b)

Proof of Theorem imasgrp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . 2  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasgrp.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasgrp.p . 2  |-  ( ph  ->  .+  =  ( +g  `  R ) )
4 imasgrp.f . 2  |-  ( ph  ->  F : V -onto-> B
)
5 imasgrp.e . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
6 imasgrp.r . 2  |-  ( ph  ->  R  e.  Grp )
763ad2ant1 1021 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  R  e.  Grp )
8 simp2 1001 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  x  e.  V )
923ad2ant1 1021 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  V  =  ( Base `  R )
)
108, 9eleqtrd 2286 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  x  e.  ( Base `  R )
)
11 simp3 1002 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  y  e.  V )
1211, 9eleqtrd 2286 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  y  e.  ( Base `  R )
)
13 eqid 2207 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
14 eqid 2207 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
1513, 14grpcl 13455 . . . 4  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  (
x ( +g  `  R
) y )  e.  ( Base `  R
) )
167, 10, 12, 15syl3anc 1250 . . 3  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x
( +g  `  R ) y )  e.  (
Base `  R )
)
1733ad2ant1 1021 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  .+  =  ( +g  `  R ) )
1817oveqd 5984 . . 3  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  =  ( x ( +g  `  R
) y ) )
1916, 18, 93eltr4d 2291 . 2  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
206adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  R  e.  Grp )
21103adant3r3 1217 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  x  e.  ( Base `  R ) )
22123adant3r3 1217 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
y  e.  ( Base `  R ) )
23 simpr3 1008 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  V )
242adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  V  =  ( Base `  R ) )
2523, 24eleqtrd 2286 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  ( Base `  R ) )
2613, 14grpass 13456 . . . . 5  |-  ( ( R  e.  Grp  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R
) ) )  -> 
( ( x ( +g  `  R ) y ) ( +g  `  R ) z )  =  ( x ( +g  `  R ) ( y ( +g  `  R ) z ) ) )
2720, 21, 22, 25, 26syl13anc 1252 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x ( +g  `  R ) y ) ( +g  `  R ) z )  =  ( x ( +g  `  R ) ( y ( +g  `  R ) z ) ) )
283adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  .+  =  ( +g  `  R ) )
29183adant3r3 1217 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  R
) y ) )
30 eqidd 2208 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  =  z )
3128, 29, 30oveq123d 5988 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( ( x ( +g  `  R
) y ) ( +g  `  R ) z ) )
32 eqidd 2208 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  x  =  x )
3328oveqd 5984 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( y  .+  z
)  =  ( y ( +g  `  R
) z ) )
3428, 32, 33oveq123d 5988 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  (
y  .+  z )
)  =  ( x ( +g  `  R
) ( y ( +g  `  R ) z ) ) )
3527, 31, 343eqtr4d 2250 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
3635fveq2d 5603 . 2  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( x  .+  ( y  .+  z
) ) ) )
37 imasgrp.z . . . . 5  |-  .0.  =  ( 0g `  R )
3813, 37grpidcl 13476 . . . 4  |-  ( R  e.  Grp  ->  .0.  e.  ( Base `  R
) )
396, 38syl 14 . . 3  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
4039, 2eleqtrrd 2287 . 2  |-  ( ph  ->  .0.  e.  V )
413adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  .+  =  ( +g  `  R ) )
4241oveqd 5984 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  R ) x ) )
432eleq2d 2277 . . . . . 6  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
4443biimpa 296 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
4513, 14, 37grplid 13478 . . . . 5  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
(  .0.  ( +g  `  R ) x )  =  x )
466, 44, 45syl2an2r 595 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  ( +g  `  R
) x )  =  x )
4742, 46eqtrd 2240 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  =  x )
4847fveq2d 5603 . 2  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x
) )
49 eqid 2207 . . . . 5  |-  ( invg `  R )  =  ( invg `  R )
5013, 49grpinvcl 13495 . . . 4  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
( ( invg `  R ) `  x
)  e.  ( Base `  R ) )
516, 44, 50syl2an2r 595 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( invg `  R ) `  x
)  e.  ( Base `  R ) )
522adantr 276 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  V  =  ( Base `  R
) )
5351, 52eleqtrrd 2287 . 2  |-  ( (
ph  /\  x  e.  V )  ->  (
( invg `  R ) `  x
)  e.  V )
5441oveqd 5984 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( ( invg `  R ) `  x
)  .+  x )  =  ( ( ( invg `  R
) `  x )
( +g  `  R ) x ) )
5513, 14, 37, 49grplinv 13497 . . . . 5  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
( ( ( invg `  R ) `
 x ) ( +g  `  R ) x )  =  .0.  )
566, 44, 55syl2an2r 595 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  (
( ( invg `  R ) `  x
) ( +g  `  R
) x )  =  .0.  )
5754, 56eqtrd 2240 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
( ( invg `  R ) `  x
)  .+  x )  =  .0.  )
5857fveq2d 5603 . 2  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( (
( invg `  R ) `  x
)  .+  x )
)  =  ( F `
 .0.  ) )
591, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58imasgrp2 13561 1  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   -onto->wfo 5288   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203    "s cimas 13246   Grpcgrp 13447   invgcminusg 13448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mulr 13038  df-0g 13205  df-iimas 13249  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451
This theorem is referenced by:  imasgrpf1  13563  imasabl  13787  imasring  13941
  Copyright terms: Public domain W3C validator