| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasgrp | Unicode version | ||
| Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| imasgrp.u |
|
| imasgrp.v |
|
| imasgrp.p |
|
| imasgrp.f |
|
| imasgrp.e |
|
| imasgrp.r |
|
| imasgrp.z |
|
| Ref | Expression |
|---|---|
| imasgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasgrp.u |
. 2
| |
| 2 | imasgrp.v |
. 2
| |
| 3 | imasgrp.p |
. 2
| |
| 4 | imasgrp.f |
. 2
| |
| 5 | imasgrp.e |
. 2
| |
| 6 | imasgrp.r |
. 2
| |
| 7 | 6 | 3ad2ant1 1021 |
. . . 4
|
| 8 | simp2 1001 |
. . . . 5
| |
| 9 | 2 | 3ad2ant1 1021 |
. . . . 5
|
| 10 | 8, 9 | eleqtrd 2286 |
. . . 4
|
| 11 | simp3 1002 |
. . . . 5
| |
| 12 | 11, 9 | eleqtrd 2286 |
. . . 4
|
| 13 | eqid 2207 |
. . . . 5
| |
| 14 | eqid 2207 |
. . . . 5
| |
| 15 | 13, 14 | grpcl 13455 |
. . . 4
|
| 16 | 7, 10, 12, 15 | syl3anc 1250 |
. . 3
|
| 17 | 3 | 3ad2ant1 1021 |
. . . 4
|
| 18 | 17 | oveqd 5984 |
. . 3
|
| 19 | 16, 18, 9 | 3eltr4d 2291 |
. 2
|
| 20 | 6 | adantr 276 |
. . . . 5
|
| 21 | 10 | 3adant3r3 1217 |
. . . . 5
|
| 22 | 12 | 3adant3r3 1217 |
. . . . 5
|
| 23 | simpr3 1008 |
. . . . . 6
| |
| 24 | 2 | adantr 276 |
. . . . . 6
|
| 25 | 23, 24 | eleqtrd 2286 |
. . . . 5
|
| 26 | 13, 14 | grpass 13456 |
. . . . 5
|
| 27 | 20, 21, 22, 25, 26 | syl13anc 1252 |
. . . 4
|
| 28 | 3 | adantr 276 |
. . . . 5
|
| 29 | 18 | 3adant3r3 1217 |
. . . . 5
|
| 30 | eqidd 2208 |
. . . . 5
| |
| 31 | 28, 29, 30 | oveq123d 5988 |
. . . 4
|
| 32 | eqidd 2208 |
. . . . 5
| |
| 33 | 28 | oveqd 5984 |
. . . . 5
|
| 34 | 28, 32, 33 | oveq123d 5988 |
. . . 4
|
| 35 | 27, 31, 34 | 3eqtr4d 2250 |
. . 3
|
| 36 | 35 | fveq2d 5603 |
. 2
|
| 37 | imasgrp.z |
. . . . 5
| |
| 38 | 13, 37 | grpidcl 13476 |
. . . 4
|
| 39 | 6, 38 | syl 14 |
. . 3
|
| 40 | 39, 2 | eleqtrrd 2287 |
. 2
|
| 41 | 3 | adantr 276 |
. . . . 5
|
| 42 | 41 | oveqd 5984 |
. . . 4
|
| 43 | 2 | eleq2d 2277 |
. . . . . 6
|
| 44 | 43 | biimpa 296 |
. . . . 5
|
| 45 | 13, 14, 37 | grplid 13478 |
. . . . 5
|
| 46 | 6, 44, 45 | syl2an2r 595 |
. . . 4
|
| 47 | 42, 46 | eqtrd 2240 |
. . 3
|
| 48 | 47 | fveq2d 5603 |
. 2
|
| 49 | eqid 2207 |
. . . . 5
| |
| 50 | 13, 49 | grpinvcl 13495 |
. . . 4
|
| 51 | 6, 44, 50 | syl2an2r 595 |
. . 3
|
| 52 | 2 | adantr 276 |
. . 3
|
| 53 | 51, 52 | eleqtrrd 2287 |
. 2
|
| 54 | 41 | oveqd 5984 |
. . . 4
|
| 55 | 13, 14, 37, 49 | grplinv 13497 |
. . . . 5
|
| 56 | 6, 44, 55 | syl2an2r 595 |
. . . 4
|
| 57 | 54, 56 | eqtrd 2240 |
. . 3
|
| 58 | 57 | fveq2d 5603 |
. 2
|
| 59 | 1, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58 | imasgrp2 13561 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-tp 3651 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mulr 13038 df-0g 13205 df-iimas 13249 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 |
| This theorem is referenced by: imasgrpf1 13563 imasabl 13787 imasring 13941 |
| Copyright terms: Public domain | W3C validator |