| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasgrp | Unicode version | ||
| Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| imasgrp.u |
|
| imasgrp.v |
|
| imasgrp.p |
|
| imasgrp.f |
|
| imasgrp.e |
|
| imasgrp.r |
|
| imasgrp.z |
|
| Ref | Expression |
|---|---|
| imasgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasgrp.u |
. 2
| |
| 2 | imasgrp.v |
. 2
| |
| 3 | imasgrp.p |
. 2
| |
| 4 | imasgrp.f |
. 2
| |
| 5 | imasgrp.e |
. 2
| |
| 6 | imasgrp.r |
. 2
| |
| 7 | 6 | 3ad2ant1 1042 |
. . . 4
|
| 8 | simp2 1022 |
. . . . 5
| |
| 9 | 2 | 3ad2ant1 1042 |
. . . . 5
|
| 10 | 8, 9 | eleqtrd 2308 |
. . . 4
|
| 11 | simp3 1023 |
. . . . 5
| |
| 12 | 11, 9 | eleqtrd 2308 |
. . . 4
|
| 13 | eqid 2229 |
. . . . 5
| |
| 14 | eqid 2229 |
. . . . 5
| |
| 15 | 13, 14 | grpcl 13541 |
. . . 4
|
| 16 | 7, 10, 12, 15 | syl3anc 1271 |
. . 3
|
| 17 | 3 | 3ad2ant1 1042 |
. . . 4
|
| 18 | 17 | oveqd 6018 |
. . 3
|
| 19 | 16, 18, 9 | 3eltr4d 2313 |
. 2
|
| 20 | 6 | adantr 276 |
. . . . 5
|
| 21 | 10 | 3adant3r3 1238 |
. . . . 5
|
| 22 | 12 | 3adant3r3 1238 |
. . . . 5
|
| 23 | simpr3 1029 |
. . . . . 6
| |
| 24 | 2 | adantr 276 |
. . . . . 6
|
| 25 | 23, 24 | eleqtrd 2308 |
. . . . 5
|
| 26 | 13, 14 | grpass 13542 |
. . . . 5
|
| 27 | 20, 21, 22, 25, 26 | syl13anc 1273 |
. . . 4
|
| 28 | 3 | adantr 276 |
. . . . 5
|
| 29 | 18 | 3adant3r3 1238 |
. . . . 5
|
| 30 | eqidd 2230 |
. . . . 5
| |
| 31 | 28, 29, 30 | oveq123d 6022 |
. . . 4
|
| 32 | eqidd 2230 |
. . . . 5
| |
| 33 | 28 | oveqd 6018 |
. . . . 5
|
| 34 | 28, 32, 33 | oveq123d 6022 |
. . . 4
|
| 35 | 27, 31, 34 | 3eqtr4d 2272 |
. . 3
|
| 36 | 35 | fveq2d 5631 |
. 2
|
| 37 | imasgrp.z |
. . . . 5
| |
| 38 | 13, 37 | grpidcl 13562 |
. . . 4
|
| 39 | 6, 38 | syl 14 |
. . 3
|
| 40 | 39, 2 | eleqtrrd 2309 |
. 2
|
| 41 | 3 | adantr 276 |
. . . . 5
|
| 42 | 41 | oveqd 6018 |
. . . 4
|
| 43 | 2 | eleq2d 2299 |
. . . . . 6
|
| 44 | 43 | biimpa 296 |
. . . . 5
|
| 45 | 13, 14, 37 | grplid 13564 |
. . . . 5
|
| 46 | 6, 44, 45 | syl2an2r 597 |
. . . 4
|
| 47 | 42, 46 | eqtrd 2262 |
. . 3
|
| 48 | 47 | fveq2d 5631 |
. 2
|
| 49 | eqid 2229 |
. . . . 5
| |
| 50 | 13, 49 | grpinvcl 13581 |
. . . 4
|
| 51 | 6, 44, 50 | syl2an2r 597 |
. . 3
|
| 52 | 2 | adantr 276 |
. . 3
|
| 53 | 51, 52 | eleqtrrd 2309 |
. 2
|
| 54 | 41 | oveqd 6018 |
. . . 4
|
| 55 | 13, 14, 37, 49 | grplinv 13583 |
. . . . 5
|
| 56 | 6, 44, 55 | syl2an2r 597 |
. . . 4
|
| 57 | 54, 56 | eqtrd 2262 |
. . 3
|
| 58 | 57 | fveq2d 5631 |
. 2
|
| 59 | 1, 2, 3, 4, 5, 6, 19, 36, 40, 48, 53, 58 | imasgrp2 13647 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-mulr 13124 df-0g 13291 df-iimas 13335 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 |
| This theorem is referenced by: imasgrpf1 13649 imasabl 13873 imasring 14027 |
| Copyright terms: Public domain | W3C validator |