ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss1 Unicode version

Theorem lss1 14124
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1  |-  ( W  e.  LMod  ->  V  e.  S )

Proof of Theorem lss1
Dummy variables  a  b  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 lssss.v . . 3  |-  V  =  ( Base `  W
)
43a1i 9 . 2  |-  ( W  e.  LMod  ->  V  =  ( Base `  W
) )
5 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
6 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
7 lssss.s . . 3  |-  S  =  ( LSubSp `  W )
87a1i 9 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
9 ssidd 3214 . 2  |-  ( W  e.  LMod  ->  V  C_  V )
10 eqid 2205 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
113, 10lmod0vcl 14079 . . 3  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
12 elex2 2788 . . 3  |-  ( ( 0g `  W )  e.  V  ->  E. j 
j  e.  V )
1311, 12syl 14 . 2  |-  ( W  e.  LMod  ->  E. j 
j  e.  V )
14 simpl 109 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  W  e.  LMod )
15 eqid 2205 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
16 eqid 2205 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
17 eqid 2205 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
183, 15, 16, 17lmodvscl 14067 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  V )  ->  ( x ( .s
`  W ) a )  e.  V )
19183adant3r3 1217 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) a )  e.  V )
20 simpr3 1008 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  b  e.  V )
21 eqid 2205 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
223, 21lmodvacl 14064 . . 3  |-  ( ( W  e.  LMod  /\  (
x ( .s `  W ) a )  e.  V  /\  b  e.  V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
2314, 19, 20, 22syl3anc 1250 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
24 lmodgrp 14056 . 2  |-  ( W  e.  LMod  ->  W  e. 
Grp )
251, 2, 4, 5, 6, 8, 9, 13, 23, 24islssmd 14121 1  |-  ( W  e.  LMod  ->  V  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Scalarcsca 12912   .scvsca 12913   0gc0g 13088   Grpcgrp 13332   LModclmod 14049   LSubSpclss 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-lmod 14051  df-lssm 14115
This theorem is referenced by:  lssuni  14125  islss3  14141  lspf  14151  lspval  14152  lidl1  14252
  Copyright terms: Public domain W3C validator