ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss1 Unicode version

Theorem lss1 14326
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1  |-  ( W  e.  LMod  ->  V  e.  S )

Proof of Theorem lss1
Dummy variables  a  b  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 lssss.v . . 3  |-  V  =  ( Base `  W
)
43a1i 9 . 2  |-  ( W  e.  LMod  ->  V  =  ( Base `  W
) )
5 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
6 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
7 lssss.s . . 3  |-  S  =  ( LSubSp `  W )
87a1i 9 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
9 ssidd 3245 . 2  |-  ( W  e.  LMod  ->  V  C_  V )
10 eqid 2229 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
113, 10lmod0vcl 14281 . . 3  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
12 elex2 2816 . . 3  |-  ( ( 0g `  W )  e.  V  ->  E. j 
j  e.  V )
1311, 12syl 14 . 2  |-  ( W  e.  LMod  ->  E. j 
j  e.  V )
14 simpl 109 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  W  e.  LMod )
15 eqid 2229 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
16 eqid 2229 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
17 eqid 2229 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
183, 15, 16, 17lmodvscl 14269 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  V )  ->  ( x ( .s
`  W ) a )  e.  V )
19183adant3r3 1238 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) a )  e.  V )
20 simpr3 1029 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  b  e.  V )
21 eqid 2229 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
223, 21lmodvacl 14266 . . 3  |-  ( ( W  e.  LMod  /\  (
x ( .s `  W ) a )  e.  V  /\  b  e.  V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
2314, 19, 20, 22syl3anc 1271 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
24 lmodgrp 14258 . 2  |-  ( W  e.  LMod  ->  W  e. 
Grp )
251, 2, 4, 5, 6, 8, 9, 13, 23, 24islssmd 14323 1  |-  ( W  e.  LMod  ->  V  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Scalarcsca 13113   .scvsca 13114   0gc0g 13289   Grpcgrp 13533   LModclmod 14251   LSubSpclss 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mulr 13124  df-sca 13126  df-vsca 13127  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-lmod 14253  df-lssm 14317
This theorem is referenced by:  lssuni  14327  islss3  14343  lspf  14353  lspval  14354  lidl1  14454
  Copyright terms: Public domain W3C validator