ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss1 Unicode version

Theorem lss1 13994
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1  |-  ( W  e.  LMod  ->  V  e.  S )

Proof of Theorem lss1
Dummy variables  a  b  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2197 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 lssss.v . . 3  |-  V  =  ( Base `  W
)
43a1i 9 . 2  |-  ( W  e.  LMod  ->  V  =  ( Base `  W
) )
5 eqidd 2197 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
6 eqidd 2197 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
7 lssss.s . . 3  |-  S  =  ( LSubSp `  W )
87a1i 9 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
9 ssidd 3205 . 2  |-  ( W  e.  LMod  ->  V  C_  V )
10 eqid 2196 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
113, 10lmod0vcl 13949 . . 3  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
12 elex2 2779 . . 3  |-  ( ( 0g `  W )  e.  V  ->  E. j 
j  e.  V )
1311, 12syl 14 . 2  |-  ( W  e.  LMod  ->  E. j 
j  e.  V )
14 simpl 109 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  W  e.  LMod )
15 eqid 2196 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
16 eqid 2196 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
17 eqid 2196 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
183, 15, 16, 17lmodvscl 13937 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  V )  ->  ( x ( .s
`  W ) a )  e.  V )
19183adant3r3 1216 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) a )  e.  V )
20 simpr3 1007 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  b  e.  V )
21 eqid 2196 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
223, 21lmodvacl 13934 . . 3  |-  ( ( W  e.  LMod  /\  (
x ( .s `  W ) a )  e.  V  /\  b  e.  V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
2314, 19, 20, 22syl3anc 1249 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
24 lmodgrp 13926 . 2  |-  ( W  e.  LMod  ->  W  e. 
Grp )
251, 2, 4, 5, 6, 8, 9, 13, 23, 24islssmd 13991 1  |-  ( W  e.  LMod  ->  V  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780  Scalarcsca 12783   .scvsca 12784   0gc0g 12958   Grpcgrp 13202   LModclmod 13919   LSubSpclss 13984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-lmod 13921  df-lssm 13985
This theorem is referenced by:  lssuni  13995  islss3  14011  lspf  14021  lspval  14022  lidl1  14122
  Copyright terms: Public domain W3C validator