ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lss1 Unicode version

Theorem lss1 13858
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v  |-  V  =  ( Base `  W
)
lssss.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lss1  |-  ( W  e.  LMod  ->  V  e.  S )

Proof of Theorem lss1
Dummy variables  a  b  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 lssss.v . . 3  |-  V  =  ( Base `  W
)
43a1i 9 . 2  |-  ( W  e.  LMod  ->  V  =  ( Base `  W
) )
5 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
6 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
7 lssss.s . . 3  |-  S  =  ( LSubSp `  W )
87a1i 9 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
9 ssidd 3200 . 2  |-  ( W  e.  LMod  ->  V  C_  V )
10 eqid 2193 . . . 4  |-  ( 0g
`  W )  =  ( 0g `  W
)
113, 10lmod0vcl 13813 . . 3  |-  ( W  e.  LMod  ->  ( 0g
`  W )  e.  V )
12 elex2 2776 . . 3  |-  ( ( 0g `  W )  e.  V  ->  E. j 
j  e.  V )
1311, 12syl 14 . 2  |-  ( W  e.  LMod  ->  E. j 
j  e.  V )
14 simpl 109 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  W  e.  LMod )
15 eqid 2193 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
16 eqid 2193 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
17 eqid 2193 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
183, 15, 16, 17lmodvscl 13801 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) )  /\  a  e.  V )  ->  ( x ( .s
`  W ) a )  e.  V )
19183adant3r3 1216 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
x ( .s `  W ) a )  e.  V )
20 simpr3 1007 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  b  e.  V )
21 eqid 2193 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
223, 21lmodvacl 13798 . . 3  |-  ( ( W  e.  LMod  /\  (
x ( .s `  W ) a )  e.  V  /\  b  e.  V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
2314, 19, 20, 22syl3anc 1249 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  V  /\  b  e.  V
) )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  V )
24 lmodgrp 13790 . 2  |-  ( W  e.  LMod  ->  W  e. 
Grp )
251, 2, 4, 5, 6, 8, 9, 13, 23, 24islssmd 13855 1  |-  ( W  e.  LMod  ->  V  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Scalarcsca 12698   .scvsca 12699   0gc0g 12867   Grpcgrp 13072   LModclmod 13783   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-lmod 13785  df-lssm 13849
This theorem is referenced by:  lssuni  13859  islss3  13875  lspf  13885  lspval  13886  lidl1  13986
  Copyright terms: Public domain W3C validator