ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmnd Unicode version

Theorem imasmnd 13329
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmnd.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasmnd.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasmnd.p  |-  .+  =  ( +g  `  R )
imasmnd.f  |-  ( ph  ->  F : V -onto-> B
)
imasmnd.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
imasmnd.r  |-  ( ph  ->  R  e.  Mnd )
imasmnd.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
imasmnd  |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Distinct variable groups:    q, p,  .+    a, b, p, q, ph    U, a, b, p, q    .0. , p, q    B, p, q    F, a, b, p, q    R, p, q    V, a, b, p, q
Allowed substitution hints:    B( a, b)    .+ ( a, b)    R( a, b)    .0. ( a, b)

Proof of Theorem imasmnd
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmnd.u . 2  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasmnd.v . 2  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasmnd.p . 2  |-  .+  =  ( +g  `  R )
4 imasmnd.f . 2  |-  ( ph  ->  F : V -onto-> B
)
5 imasmnd.e . 2  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
6 imasmnd.r . 2  |-  ( ph  ->  R  e.  Mnd )
763ad2ant1 1021 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  R  e.  Mnd )
8 simp2 1001 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  x  e.  V )
923ad2ant1 1021 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  V  =  ( Base `  R )
)
108, 9eleqtrd 2285 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  x  e.  ( Base `  R )
)
11 simp3 1002 . . . . 5  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  y  e.  V )
1211, 9eleqtrd 2285 . . . 4  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  y  e.  ( Base `  R )
)
13 eqid 2206 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
1413, 3mndcl 13299 . . . 4  |-  ( ( R  e.  Mnd  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) )  ->  (
x  .+  y )  e.  ( Base `  R
) )
157, 10, 12, 14syl3anc 1250 . . 3  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
1615, 9eleqtrrd 2286 . 2  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
176adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  R  e.  Mnd )
18103adant3r3 1217 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  x  e.  ( Base `  R ) )
19123adant3r3 1217 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
y  e.  ( Base `  R ) )
20 simpr3 1008 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  V )
212adantr 276 . . . . 5  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  V  =  ( Base `  R ) )
2220, 21eleqtrd 2285 . . . 4  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  ( Base `  R ) )
2313, 3mndass 13300 . . . 4  |-  ( ( R  e.  Mnd  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R )  /\  z  e.  ( Base `  R
) ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
2417, 18, 19, 22, 23syl13anc 1252 . . 3  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
2524fveq2d 5587 . 2  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( x  .+  ( y  .+  z
) ) ) )
26 imasmnd.z . . . . 5  |-  .0.  =  ( 0g `  R )
2713, 26mndidcl 13306 . . . 4  |-  ( R  e.  Mnd  ->  .0.  e.  ( Base `  R
) )
286, 27syl 14 . . 3  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
2928, 2eleqtrrd 2286 . 2  |-  ( ph  ->  .0.  e.  V )
302eleq2d 2276 . . . . 5  |-  ( ph  ->  ( x  e.  V  <->  x  e.  ( Base `  R
) ) )
3130biimpa 296 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  ( Base `  R
) )
3213, 3, 26mndlid 13311 . . . 4  |-  ( ( R  e.  Mnd  /\  x  e.  ( Base `  R ) )  -> 
(  .0.  .+  x
)  =  x )
336, 31, 32syl2an2r 595 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  =  x )
3433fveq2d 5587 . 2  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x
) )
3513, 3, 26mndrid 13312 . . . 4  |-  ( ( R  e.  Mnd  /\  x  e.  ( Base `  R ) )  -> 
( x  .+  .0.  )  =  x )
366, 31, 35syl2an2r 595 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
x  .+  .0.  )  =  x )
3736fveq2d 5587 . 2  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( x  .+  .0.  ) )  =  ( F `  x
) )
381, 2, 3, 4, 5, 6, 16, 25, 29, 34, 37imasmnd2 13328 1  |-  ( ph  ->  ( U  e.  Mnd  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   -onto->wfo 5274   ` cfv 5276  (class class class)co 5951   Basecbs 12876   +g cplusg 12953   0gc0g 13132    "s cimas 13175   Mndcmnd 13292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-0g 13134  df-iimas 13178  df-mgm 13232  df-sgrp 13278  df-mnd 13293
This theorem is referenced by:  imasmndf1  13330
  Copyright terms: Public domain W3C validator