ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrass Unicode version

Theorem dvrass 13486
Description: An associative law for division. (divassap 8676 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
dvrass.b  |-  B  =  ( Base `  R
)
dvrass.o  |-  U  =  (Unit `  R )
dvrass.d  |-  ./  =  (/r
`  R )
dvrass.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvrass  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( X  .x.  ( Y 
./  Z ) ) )

Proof of Theorem dvrass
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  R  e.  Ring )
2 simpr1 1005 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  X  e.  B )
3 simpr2 1006 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Y  e.  B )
4 simpr3 1007 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  Z  e.  U )
5 dvrass.o . . . . 5  |-  U  =  (Unit `  R )
6 eqid 2189 . . . . 5  |-  ( invr `  R )  =  (
invr `  R )
7 dvrass.b . . . . 5  |-  B  =  ( Base `  R
)
85, 6, 7ringinvcl 13472 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  U )  ->  (
( invr `  R ) `  Z )  e.  B
)
94, 8syldan 282 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( invr `  R ) `  Z )  e.  B
)
10 dvrass.t . . . 4  |-  .x.  =  ( .r `  R )
117, 10ringass 13367 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  ( ( invr `  R
) `  Z )  e.  B ) )  -> 
( ( X  .x.  Y )  .x.  (
( invr `  R ) `  Z ) )  =  ( X  .x.  ( Y  .x.  ( ( invr `  R ) `  Z
) ) ) )
121, 2, 3, 9, 11syl13anc 1251 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  .x.  ( ( invr `  R
) `  Z )
)  =  ( X 
.x.  ( Y  .x.  ( ( invr `  R
) `  Z )
) ) )
137a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  B  =  ( Base `  R )
)
1410a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  .x.  =  ( .r `  R ) )
155a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  U  =  (Unit `  R ) )
166a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( invr `  R )  =  (
invr `  R )
)
17 dvrass.d . . . 4  |-  ./  =  (/r
`  R )
1817a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ./  =  (/r `  R ) )
197, 10ringcl 13364 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
20193adant3r3 1216 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .x.  Y )  e.  B
)
2113, 14, 15, 16, 18, 1, 20, 4dvrvald 13481 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( ( X  .x.  Y
)  .x.  ( ( invr `  R ) `  Z ) ) )
2213, 14, 15, 16, 18, 1, 3, 4dvrvald 13481 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( Y  ./  Z )  =  ( Y  .x.  ( (
invr `  R ) `  Z ) ) )
2322oveq2d 5911 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( X  .x.  ( Y  ./  Z
) )  =  ( X  .x.  ( Y 
.x.  ( ( invr `  R ) `  Z
) ) ) )
2412, 21, 233eqtr4d 2232 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Z )  =  ( X  .x.  ( Y 
./  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5895   Basecbs 12511   .rcmulr 12587   Ringcrg 13347  Unitcui 13434   invrcinvr 13467  /rcdvr 13478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-tpos 6269  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-cmn 13222  df-abl 13223  df-mgp 13272  df-ur 13311  df-srg 13315  df-ring 13349  df-oppr 13415  df-dvdsr 13436  df-unit 13437  df-invr 13468  df-dvr 13479
This theorem is referenced by:  dvrcan3  13488
  Copyright terms: Public domain W3C validator