ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubsub4 Unicode version

Theorem grpsubsub4 13295
Description: Double group subtraction (subsub4 8276 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubsub4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .-  Z )  =  ( X  .-  ( Z  .+  Y ) ) )

Proof of Theorem grpsubsub4
StepHypRef Expression
1 simpl 109 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  G  e.  Grp )
2 grpsubadd.b . . . . . . . 8  |-  B  =  ( Base `  G
)
3 grpsubadd.m . . . . . . . 8  |-  .-  =  ( -g `  G )
42, 3grpsubcl 13282 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  e.  B )
543adant3r3 1216 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  Y )  e.  B )
6 simpr3 1007 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
7 grpsubadd.p . . . . . . 7  |-  .+  =  ( +g  `  G )
82, 7, 3grpnpcan 13294 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  .-  Y )  e.  B  /\  Z  e.  B )  ->  (
( ( X  .-  Y )  .-  Z
)  .+  Z )  =  ( X  .-  Y ) )
91, 5, 6, 8syl3anc 1249 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .-  Y )  .-  Z
)  .+  Z )  =  ( X  .-  Y ) )
109oveq1d 5940 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( X 
.-  Y )  .-  Z )  .+  Z
)  .+  Y )  =  ( ( X 
.-  Y )  .+  Y ) )
112, 3grpsubcl 13282 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  .-  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .-  Y
)  .-  Z )  e.  B )
121, 5, 6, 11syl3anc 1249 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .-  Z )  e.  B )
13 simpr2 1006 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
142, 7grpass 13211 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( ( X 
.-  Y )  .-  Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( ( ( X 
.-  Y )  .-  Z )  .+  Z
)  .+  Y )  =  ( ( ( X  .-  Y ) 
.-  Z )  .+  ( Z  .+  Y ) ) )
151, 12, 6, 13, 14syl13anc 1251 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( X 
.-  Y )  .-  Z )  .+  Z
)  .+  Y )  =  ( ( ( X  .-  Y ) 
.-  Z )  .+  ( Z  .+  Y ) ) )
162, 7, 3grpnpcan 13294 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  .+  Y
)  =  X )
17163adant3r3 1216 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .+  Y )  =  X )
1810, 15, 173eqtr3d 2237 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .-  Y )  .-  Z
)  .+  ( Z  .+  Y ) )  =  X )
19 simpr1 1005 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
202, 7grpcl 13210 . . . . 5  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .+  Y
)  e.  B )
211, 6, 13, 20syl3anc 1249 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Z  .+  Y )  e.  B )
222, 7, 3grpsubadd 13290 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( Z  .+  Y
)  e.  B  /\  ( ( X  .-  Y )  .-  Z
)  e.  B ) )  ->  ( ( X  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Y )  .-  Z
)  <->  ( ( ( X  .-  Y ) 
.-  Z )  .+  ( Z  .+  Y ) )  =  X ) )
231, 19, 21, 12, 22syl13anc 1251 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  ( Z  .+  Y ) )  =  ( ( X 
.-  Y )  .-  Z )  <->  ( (
( X  .-  Y
)  .-  Z )  .+  ( Z  .+  Y
) )  =  X ) )
2418, 23mpbird 167 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Y )  .-  Z
) )
2524eqcomd 2202 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .-  Z )  =  ( X  .-  ( Z  .+  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202   -gcsg 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207
This theorem is referenced by:  grppnpcan2  13296  grpnnncan2  13299
  Copyright terms: Public domain W3C validator