ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubsub4 Unicode version

Theorem grpsubsub4 13626
Description: Double group subtraction (subsub4 8379 analog). (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b  |-  B  =  ( Base `  G
)
grpsubadd.p  |-  .+  =  ( +g  `  G )
grpsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
grpsubsub4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .-  Z )  =  ( X  .-  ( Z  .+  Y ) ) )

Proof of Theorem grpsubsub4
StepHypRef Expression
1 simpl 109 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  G  e.  Grp )
2 grpsubadd.b . . . . . . . 8  |-  B  =  ( Base `  G
)
3 grpsubadd.m . . . . . . . 8  |-  .-  =  ( -g `  G )
42, 3grpsubcl 13613 . . . . . . 7  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .-  Y
)  e.  B )
543adant3r3 1238 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  Y )  e.  B )
6 simpr3 1029 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
7 grpsubadd.p . . . . . . 7  |-  .+  =  ( +g  `  G )
82, 7, 3grpnpcan 13625 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  .-  Y )  e.  B  /\  Z  e.  B )  ->  (
( ( X  .-  Y )  .-  Z
)  .+  Z )  =  ( X  .-  Y ) )
91, 5, 6, 8syl3anc 1271 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .-  Y )  .-  Z
)  .+  Z )  =  ( X  .-  Y ) )
109oveq1d 6016 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( X 
.-  Y )  .-  Z )  .+  Z
)  .+  Y )  =  ( ( X 
.-  Y )  .+  Y ) )
112, 3grpsubcl 13613 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  .-  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .-  Y
)  .-  Z )  e.  B )
121, 5, 6, 11syl3anc 1271 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .-  Z )  e.  B )
13 simpr2 1028 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
142, 7grpass 13542 . . . . 5  |-  ( ( G  e.  Grp  /\  ( ( ( X 
.-  Y )  .-  Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( ( ( X 
.-  Y )  .-  Z )  .+  Z
)  .+  Y )  =  ( ( ( X  .-  Y ) 
.-  Z )  .+  ( Z  .+  Y ) ) )
151, 12, 6, 13, 14syl13anc 1273 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( ( X 
.-  Y )  .-  Z )  .+  Z
)  .+  Y )  =  ( ( ( X  .-  Y ) 
.-  Z )  .+  ( Z  .+  Y ) ) )
162, 7, 3grpnpcan 13625 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .-  Y )  .+  Y
)  =  X )
17163adant3r3 1238 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .+  Y )  =  X )
1810, 15, 173eqtr3d 2270 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( ( X  .-  Y )  .-  Z
)  .+  ( Z  .+  Y ) )  =  X )
19 simpr1 1027 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
202, 7grpcl 13541 . . . . 5  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .+  Y
)  e.  B )
211, 6, 13, 20syl3anc 1271 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Z  .+  Y )  e.  B )
222, 7, 3grpsubadd 13621 . . . 4  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( Z  .+  Y
)  e.  B  /\  ( ( X  .-  Y )  .-  Z
)  e.  B ) )  ->  ( ( X  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Y )  .-  Z
)  <->  ( ( ( X  .-  Y ) 
.-  Z )  .+  ( Z  .+  Y ) )  =  X ) )
231, 19, 21, 12, 22syl13anc 1273 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  ( Z  .+  Y ) )  =  ( ( X 
.-  Y )  .-  Z )  <->  ( (
( X  .-  Y
)  .-  Z )  .+  ( Z  .+  Y
) )  =  X ) )
2418, 23mpbird 167 . 2  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Y )  .-  Z
) )
2524eqcomd 2235 1  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .-  Y
)  .-  Z )  =  ( X  .-  ( Z  .+  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   Grpcgrp 13533   -gcsg 13535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538
This theorem is referenced by:  grppnpcan2  13627  grpnnncan2  13630
  Copyright terms: Public domain W3C validator