ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmn12 Unicode version

Theorem cmn12 13376
Description: Commutative/associative law for commutative monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
cmn12  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .+  ( Y  .+  Z
) )  =  ( Y  .+  ( X 
.+  Z ) ) )

Proof of Theorem cmn12
StepHypRef Expression
1 ablcom.b . 2  |-  B  =  ( Base `  G
)
2 ablcom.p . 2  |-  .+  =  ( +g  `  G )
3 cmnmnd 13371 . . 3  |-  ( G  e. CMnd  ->  G  e.  Mnd )
43adantr 276 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  G  e.  Mnd )
5 simpr1 1005 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  X  e.  B )
6 simpr2 1006 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  e.  B )
7 simpr3 1007 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  e.  B )
81, 2cmncom 13372 . . 3  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
983adant3r3 1216 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
101, 2, 4, 5, 6, 7, 9mnd12g 13009 1  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .+  ( Y  .+  Z
) )  =  ( Y  .+  ( X 
.+  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   Mndcmnd 12997  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-sgrp 12985  df-mnd 12998  df-cmn 13356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator