ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz Unicode version

Theorem elfz 9428
Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
elfz  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )

Proof of Theorem elfz
StepHypRef Expression
1 elfz1 9427 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
2 3anass 928 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
32baib 866 . . . 4  |-  ( K  e.  ZZ  ->  (
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
41, 3sylan9bb 450 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( K  e.  ( M ... N
)  <->  ( M  <_  K  /\  K  <_  N
) ) )
543impa 1138 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
653comr 1151 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    e. wcel 1438   class class class wbr 3845  (class class class)co 5652    <_ cle 7521   ZZcz 8748   ...cfz 9422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-cnex 7434  ax-resscn 7435
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-neg 7654  df-z 8749  df-fz 9423
This theorem is referenced by:  elfz5  9430  fztri3or  9451  fzdcel  9452  fznatpl1  9486  fzdifsuc  9491  fzrev  9494  fzctr  9540  elfzo  9556  iseqf1olemqk  9919  ibcval5  10167  infssuzex  11219  isprm3  11374  hashdvds  11471
  Copyright terms: Public domain W3C validator