ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz Unicode version

Theorem elfz 9924
Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
elfz  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )

Proof of Theorem elfz
StepHypRef Expression
1 elfz1 9923 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
2 3anass 967 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
32baib 905 . . . 4  |-  ( K  e.  ZZ  ->  (
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
41, 3sylan9bb 458 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( K  e.  ( M ... N
)  <->  ( M  <_  K  /\  K  <_  N
) ) )
543impa 1177 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
653comr 1193 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K  /\  K  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 2128   class class class wbr 3967  (class class class)co 5826    <_ cle 7915   ZZcz 9172   ...cfz 9918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-setind 4498  ax-cnex 7825  ax-resscn 7826
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-iota 5137  df-fun 5174  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-neg 8053  df-z 9173  df-fz 9919
This theorem is referenced by:  elfz5  9926  fztri3or  9947  fzdcel  9948  fznatpl1  9984  fzdifsuc  9989  fzrev  9992  fzctr  10041  elfzo  10057  iseqf1olemqk  10402  bcval5  10648  infssuzex  11848  isprm3  12010  hashdvds  12111
  Copyright terms: Public domain W3C validator