ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmettri2 Unicode version

Theorem psmettri2 13122
Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmettri2  |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )

Proof of Theorem psmettri2
Dummy variables  a  b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 12781 . . . . . . . . 9  |- PsMet  =  ( d  e.  _V  |->  { e  e.  ( RR*  ^m  ( d  X.  d
) )  |  A. a  e.  d  (
( a e a )  =  0  /\ 
A. b  e.  d 
A. c  e.  d  ( a e b )  <_  ( (
c e a ) +e ( c e b ) ) ) } )
21mptrcl 5578 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 13117 . . . . . . . 8  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) ) ) )
42, 3syl 14 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  ( D  e.  (PsMet `  X )  <->  ( D : ( X  X.  X ) --> RR* 
/\  A. a  e.  X  ( ( a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) ) ) ) ) )
54ibi 175 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. a  e.  X  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) ) )
65simprd 113 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) )
76r19.21bi 2558 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) )
87simprd 113 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  A. b  e.  X  A. c  e.  X  ( a D b )  <_ 
( ( c D a ) +e
( c D b ) ) )
98ralrimiva 2543 . 2  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  A. b  e.  X  A. c  e.  X  ( a D b )  <_ 
( ( c D a ) +e
( c D b ) ) )
10 oveq1 5860 . . . . 5  |-  ( a  =  A  ->  (
a D b )  =  ( A D b ) )
11 oveq2 5861 . . . . . 6  |-  ( a  =  A  ->  (
c D a )  =  ( c D A ) )
1211oveq1d 5868 . . . . 5  |-  ( a  =  A  ->  (
( c D a ) +e ( c D b ) )  =  ( ( c D A ) +e ( c D b ) ) )
1310, 12breq12d 4002 . . . 4  |-  ( a  =  A  ->  (
( a D b )  <_  ( (
c D a ) +e ( c D b ) )  <-> 
( A D b )  <_  ( (
c D A ) +e ( c D b ) ) ) )
14 oveq2 5861 . . . . 5  |-  ( b  =  B  ->  ( A D b )  =  ( A D B ) )
15 oveq2 5861 . . . . . 6  |-  ( b  =  B  ->  (
c D b )  =  ( c D B ) )
1615oveq2d 5869 . . . . 5  |-  ( b  =  B  ->  (
( c D A ) +e ( c D b ) )  =  ( ( c D A ) +e ( c D B ) ) )
1714, 16breq12d 4002 . . . 4  |-  ( b  =  B  ->  (
( A D b )  <_  ( (
c D A ) +e ( c D b ) )  <-> 
( A D B )  <_  ( (
c D A ) +e ( c D B ) ) ) )
18 oveq1 5860 . . . . . 6  |-  ( c  =  C  ->  (
c D A )  =  ( C D A ) )
19 oveq1 5860 . . . . . 6  |-  ( c  =  C  ->  (
c D B )  =  ( C D B ) )
2018, 19oveq12d 5871 . . . . 5  |-  ( c  =  C  ->  (
( c D A ) +e ( c D B ) )  =  ( ( C D A ) +e ( C D B ) ) )
2120breq2d 4001 . . . 4  |-  ( c  =  C  ->  (
( A D B )  <_  ( (
c D A ) +e ( c D B ) )  <-> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) ) )
2213, 17, 21rspc3v 2850 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
23223comr 1206 . 2  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
249, 23mpan9 279 1  |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730   class class class wbr 3989    X. cxp 4609   -->wf 5194   ` cfv 5198  (class class class)co 5853    ^m cmap 6626   0cc0 7774   RR*cxr 7953    <_ cle 7955   +ecxad 9727  PsMetcpsmet 12773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-psmet 12781
This theorem is referenced by:  psmetsym  13123  psmettri  13124  psmetge0  13125  psmetres2  13127  xblss2ps  13198
  Copyright terms: Public domain W3C validator