ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psmettri2 Unicode version

Theorem psmettri2 14915
Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Assertion
Ref Expression
psmettri2  |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )

Proof of Theorem psmettri2
Dummy variables  a  b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-psmet 14420 . . . . . . . . 9  |- PsMet  =  ( d  e.  _V  |->  { e  e.  ( RR*  ^m  ( d  X.  d
) )  |  A. a  e.  d  (
( a e a )  =  0  /\ 
A. b  e.  d 
A. c  e.  d  ( a e b )  <_  ( (
c e a ) +e ( c e b ) ) ) } )
21mptrcl 5685 . . . . . . . 8  |-  ( D  e.  (PsMet `  X
)  ->  X  e.  _V )
3 ispsmet 14910 . . . . . . . 8  |-  ( X  e.  _V  ->  ( D  e.  (PsMet `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) ) ) )
42, 3syl 14 . . . . . . 7  |-  ( D  e.  (PsMet `  X
)  ->  ( D  e.  (PsMet `  X )  <->  ( D : ( X  X.  X ) --> RR* 
/\  A. a  e.  X  ( ( a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) ) ) ) ) )
54ibi 176 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  ( D : ( X  X.  X ) --> RR*  /\  A. a  e.  X  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) ) )
65simprd 114 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  ( (
a D a )  =  0  /\  A. b  e.  X  A. c  e.  X  (
a D b )  <_  ( ( c D a ) +e ( c D b ) ) ) )
76r19.21bi 2596 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  (
( a D a )  =  0  /\ 
A. b  e.  X  A. c  e.  X  ( a D b )  <_  ( (
c D a ) +e ( c D b ) ) ) )
87simprd 114 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  a  e.  X )  ->  A. b  e.  X  A. c  e.  X  ( a D b )  <_ 
( ( c D a ) +e
( c D b ) ) )
98ralrimiva 2581 . 2  |-  ( D  e.  (PsMet `  X
)  ->  A. a  e.  X  A. b  e.  X  A. c  e.  X  ( a D b )  <_ 
( ( c D a ) +e
( c D b ) ) )
10 oveq1 5974 . . . . 5  |-  ( a  =  A  ->  (
a D b )  =  ( A D b ) )
11 oveq2 5975 . . . . . 6  |-  ( a  =  A  ->  (
c D a )  =  ( c D A ) )
1211oveq1d 5982 . . . . 5  |-  ( a  =  A  ->  (
( c D a ) +e ( c D b ) )  =  ( ( c D A ) +e ( c D b ) ) )
1310, 12breq12d 4072 . . . 4  |-  ( a  =  A  ->  (
( a D b )  <_  ( (
c D a ) +e ( c D b ) )  <-> 
( A D b )  <_  ( (
c D A ) +e ( c D b ) ) ) )
14 oveq2 5975 . . . . 5  |-  ( b  =  B  ->  ( A D b )  =  ( A D B ) )
15 oveq2 5975 . . . . . 6  |-  ( b  =  B  ->  (
c D b )  =  ( c D B ) )
1615oveq2d 5983 . . . . 5  |-  ( b  =  B  ->  (
( c D A ) +e ( c D b ) )  =  ( ( c D A ) +e ( c D B ) ) )
1714, 16breq12d 4072 . . . 4  |-  ( b  =  B  ->  (
( A D b )  <_  ( (
c D A ) +e ( c D b ) )  <-> 
( A D B )  <_  ( (
c D A ) +e ( c D B ) ) ) )
18 oveq1 5974 . . . . . 6  |-  ( c  =  C  ->  (
c D A )  =  ( C D A ) )
19 oveq1 5974 . . . . . 6  |-  ( c  =  C  ->  (
c D B )  =  ( C D B ) )
2018, 19oveq12d 5985 . . . . 5  |-  ( c  =  C  ->  (
( c D A ) +e ( c D B ) )  =  ( ( C D A ) +e ( C D B ) ) )
2120breq2d 4071 . . . 4  |-  ( c  =  C  ->  (
( A D B )  <_  ( (
c D A ) +e ( c D B ) )  <-> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) ) )
2213, 17, 21rspc3v 2900 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
23223comr 1214 . 2  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  A. c  e.  X  ( a D b )  <_  (
( c D a ) +e ( c D b ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
249, 23mpan9 281 1  |-  ( ( D  e.  (PsMet `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776   class class class wbr 4059    X. cxp 4691   -->wf 5286   ` cfv 5290  (class class class)co 5967    ^m cmap 6758   0cc0 7960   RR*cxr 8141    <_ cle 8143   +ecxad 9927  PsMetcpsmet 14412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-psmet 14420
This theorem is referenced by:  psmetsym  14916  psmettri  14917  psmetge0  14918  psmetres2  14920  xblss2ps  14991
  Copyright terms: Public domain W3C validator