Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > psmettri2 | Unicode version |
Description: Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
psmettri2 | PsMet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-psmet 13038 | . . . . . . . . 9 PsMet | |
2 | 1 | mptrcl 5590 | . . . . . . . 8 PsMet |
3 | ispsmet 13374 | . . . . . . . 8 PsMet | |
4 | 2, 3 | syl 14 | . . . . . . 7 PsMet PsMet |
5 | 4 | ibi 176 | . . . . . 6 PsMet |
6 | 5 | simprd 114 | . . . . 5 PsMet |
7 | 6 | r19.21bi 2563 | . . . 4 PsMet |
8 | 7 | simprd 114 | . . 3 PsMet |
9 | 8 | ralrimiva 2548 | . 2 PsMet |
10 | oveq1 5872 | . . . . 5 | |
11 | oveq2 5873 | . . . . . 6 | |
12 | 11 | oveq1d 5880 | . . . . 5 |
13 | 10, 12 | breq12d 4011 | . . . 4 |
14 | oveq2 5873 | . . . . 5 | |
15 | oveq2 5873 | . . . . . 6 | |
16 | 15 | oveq2d 5881 | . . . . 5 |
17 | 14, 16 | breq12d 4011 | . . . 4 |
18 | oveq1 5872 | . . . . . 6 | |
19 | oveq1 5872 | . . . . . 6 | |
20 | 18, 19 | oveq12d 5883 | . . . . 5 |
21 | 20 | breq2d 4010 | . . . 4 |
22 | 13, 17, 21 | rspc3v 2855 | . . 3 |
23 | 22 | 3comr 1211 | . 2 |
24 | 9, 23 | mpan9 281 | 1 PsMet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 crab 2457 cvv 2735 class class class wbr 3998 cxp 4618 wf 5204 cfv 5208 (class class class)co 5865 cmap 6638 cc0 7786 cxr 7965 cle 7967 cxad 9739 PsMetcpsmet 13030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-map 6640 df-pnf 7968 df-mnf 7969 df-xr 7970 df-psmet 13038 |
This theorem is referenced by: psmetsym 13380 psmettri 13381 psmetge0 13382 psmetres2 13384 xblss2ps 13455 |
Copyright terms: Public domain | W3C validator |