Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzrev | Unicode version |
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
Ref | Expression |
---|---|
fzrev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9216 | . . . . . . . 8 | |
2 | zre 9216 | . . . . . . . 8 | |
3 | zre 9216 | . . . . . . . 8 | |
4 | suble 8359 | . . . . . . . 8 | |
5 | 1, 2, 3, 4 | syl3an 1275 | . . . . . . 7 |
6 | 5 | 3comr 1206 | . . . . . 6 |
7 | 6 | 3expb 1199 | . . . . 5 |
8 | 7 | adantll 473 | . . . 4 |
9 | zre 9216 | . . . . . . 7 | |
10 | lesub 8360 | . . . . . . 7 | |
11 | 9, 1, 2, 10 | syl3an 1275 | . . . . . 6 |
12 | 11 | 3expb 1199 | . . . . 5 |
13 | 12 | adantlr 474 | . . . 4 |
14 | 8, 13 | anbi12d 470 | . . 3 |
15 | ancom 264 | . . 3 | |
16 | 14, 15 | bitr3di 194 | . 2 |
17 | simprr 527 | . . 3 | |
18 | zsubcl 9253 | . . . . 5 | |
19 | 18 | ancoms 266 | . . . 4 |
20 | 19 | ad2ant2lr 507 | . . 3 |
21 | zsubcl 9253 | . . . . 5 | |
22 | 21 | ancoms 266 | . . . 4 |
23 | 22 | ad2ant2r 506 | . . 3 |
24 | elfz 9971 | . . 3 | |
25 | 17, 20, 23, 24 | syl3anc 1233 | . 2 |
26 | zsubcl 9253 | . . . 4 | |
27 | 26 | adantl 275 | . . 3 |
28 | simpll 524 | . . 3 | |
29 | simplr 525 | . . 3 | |
30 | elfz 9971 | . . 3 | |
31 | 27, 28, 29, 30 | syl3anc 1233 | . 2 |
32 | 16, 25, 31 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cle 7955 cmin 8090 cz 9212 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-fz 9966 |
This theorem is referenced by: fzrev2 10041 fzrev3 10043 fzrevral 10061 fsumrev 11406 fprodrev 11582 |
Copyright terms: Public domain | W3C validator |