ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev Unicode version

Theorem fzrev 9864
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( J  -  K )  e.  ( M ... N ) ) )

Proof of Theorem fzrev
StepHypRef Expression
1 ancom 264 . . 3  |-  ( ( ( J  -  K
)  <_  N  /\  M  <_  ( J  -  K ) )  <->  ( M  <_  ( J  -  K
)  /\  ( J  -  K )  <_  N
) )
2 zre 9058 . . . . . . . 8  |-  ( J  e.  ZZ  ->  J  e.  RR )
3 zre 9058 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
4 zre 9058 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  RR )
5 suble 8202 . . . . . . . 8  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
62, 3, 4, 5syl3an 1258 . . . . . . 7  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
763comr 1189 . . . . . 6  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
873expb 1182 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( ( J  -  K )  <_  N  <->  ( J  -  N )  <_  K
) )
98adantll 467 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  -  K )  <_  N  <->  ( J  -  N )  <_  K ) )
10 zre 9058 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
11 lesub 8203 . . . . . . 7  |-  ( ( M  e.  RR  /\  J  e.  RR  /\  K  e.  RR )  ->  ( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
1210, 2, 3, 11syl3an 1258 . . . . . 6  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
13123expb 1182 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( M  <_  ( J  -  K
)  <->  K  <_  ( J  -  M ) ) )
1413adantlr 468 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
159, 14anbi12d 464 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( ( J  -  K )  <_  N  /\  M  <_  ( J  -  K )
)  <->  ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
) ) )
161, 15syl5rbbr 194 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
)  <->  ( M  <_ 
( J  -  K
)  /\  ( J  -  K )  <_  N
) ) )
17 simprr 521 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  K  e.  ZZ )
18 zsubcl 9095 . . . . 5  |-  ( ( J  e.  ZZ  /\  N  e.  ZZ )  ->  ( J  -  N
)  e.  ZZ )
1918ancoms 266 . . . 4  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ )  ->  ( J  -  N
)  e.  ZZ )
2019ad2ant2lr 501 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  N
)  e.  ZZ )
21 zsubcl 9095 . . . . 5  |-  ( ( J  e.  ZZ  /\  M  e.  ZZ )  ->  ( J  -  M
)  e.  ZZ )
2221ancoms 266 . . . 4  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ )  ->  ( J  -  M
)  e.  ZZ )
2322ad2ant2r 500 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  M
)  e.  ZZ )
24 elfz 9796 . . 3  |-  ( ( K  e.  ZZ  /\  ( J  -  N
)  e.  ZZ  /\  ( J  -  M
)  e.  ZZ )  ->  ( K  e.  ( ( J  -  N ) ... ( J  -  M )
)  <->  ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
) ) )
2517, 20, 23, 24syl3anc 1216 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( ( J  -  N )  <_  K  /\  K  <_ 
( J  -  M
) ) ) )
26 zsubcl 9095 . . . 4  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  -  K
)  e.  ZZ )
2726adantl 275 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  K
)  e.  ZZ )
28 simpll 518 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  M  e.  ZZ )
29 simplr 519 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  N  e.  ZZ )
30 elfz 9796 . . 3  |-  ( ( ( J  -  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( J  -  K
)  e.  ( M ... N )  <->  ( M  <_  ( J  -  K
)  /\  ( J  -  K )  <_  N
) ) )
3127, 28, 29, 30syl3anc 1216 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  -  K )  e.  ( M ... N )  <-> 
( M  <_  ( J  -  K )  /\  ( J  -  K
)  <_  N )
) )
3216, 25, 313bitr4d 219 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( J  -  K )  e.  ( M ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619    <_ cle 7801    - cmin 7933   ZZcz 9054   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-fz 9791
This theorem is referenced by:  fzrev2  9865  fzrev3  9867  fzrevral  9885  fsumrev  11212
  Copyright terms: Public domain W3C validator