ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev Unicode version

Theorem fzrev 9895
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( J  -  K )  e.  ( M ... N ) ) )

Proof of Theorem fzrev
StepHypRef Expression
1 zre 9082 . . . . . . . 8  |-  ( J  e.  ZZ  ->  J  e.  RR )
2 zre 9082 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
3 zre 9082 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  RR )
4 suble 8226 . . . . . . . 8  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
51, 2, 3, 4syl3an 1259 . . . . . . 7  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
653comr 1190 . . . . . 6  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
763expb 1183 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( ( J  -  K )  <_  N  <->  ( J  -  N )  <_  K
) )
87adantll 468 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  -  K )  <_  N  <->  ( J  -  N )  <_  K ) )
9 zre 9082 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
10 lesub 8227 . . . . . . 7  |-  ( ( M  e.  RR  /\  J  e.  RR  /\  K  e.  RR )  ->  ( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
119, 1, 2, 10syl3an 1259 . . . . . 6  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
12113expb 1183 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( M  <_  ( J  -  K
)  <->  K  <_  ( J  -  M ) ) )
1312adantlr 469 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
148, 13anbi12d 465 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( ( J  -  K )  <_  N  /\  M  <_  ( J  -  K )
)  <->  ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
) ) )
15 ancom 264 . . 3  |-  ( ( ( J  -  K
)  <_  N  /\  M  <_  ( J  -  K ) )  <->  ( M  <_  ( J  -  K
)  /\  ( J  -  K )  <_  N
) )
1614, 15bitr3di 194 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
)  <->  ( M  <_ 
( J  -  K
)  /\  ( J  -  K )  <_  N
) ) )
17 simprr 522 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  K  e.  ZZ )
18 zsubcl 9119 . . . . 5  |-  ( ( J  e.  ZZ  /\  N  e.  ZZ )  ->  ( J  -  N
)  e.  ZZ )
1918ancoms 266 . . . 4  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ )  ->  ( J  -  N
)  e.  ZZ )
2019ad2ant2lr 502 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  N
)  e.  ZZ )
21 zsubcl 9119 . . . . 5  |-  ( ( J  e.  ZZ  /\  M  e.  ZZ )  ->  ( J  -  M
)  e.  ZZ )
2221ancoms 266 . . . 4  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ )  ->  ( J  -  M
)  e.  ZZ )
2322ad2ant2r 501 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  M
)  e.  ZZ )
24 elfz 9827 . . 3  |-  ( ( K  e.  ZZ  /\  ( J  -  N
)  e.  ZZ  /\  ( J  -  M
)  e.  ZZ )  ->  ( K  e.  ( ( J  -  N ) ... ( J  -  M )
)  <->  ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
) ) )
2517, 20, 23, 24syl3anc 1217 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( ( J  -  N )  <_  K  /\  K  <_ 
( J  -  M
) ) ) )
26 zsubcl 9119 . . . 4  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  -  K
)  e.  ZZ )
2726adantl 275 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  K
)  e.  ZZ )
28 simpll 519 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  M  e.  ZZ )
29 simplr 520 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  N  e.  ZZ )
30 elfz 9827 . . 3  |-  ( ( ( J  -  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( J  -  K
)  e.  ( M ... N )  <->  ( M  <_  ( J  -  K
)  /\  ( J  -  K )  <_  N
) ) )
3127, 28, 29, 30syl3anc 1217 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  -  K )  e.  ( M ... N )  <-> 
( M  <_  ( J  -  K )  /\  ( J  -  K
)  <_  N )
) )
3216, 25, 313bitr4d 219 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( J  -  K )  e.  ( M ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   RRcr 7643    <_ cle 7825    - cmin 7957   ZZcz 9078   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-fz 9822
This theorem is referenced by:  fzrev2  9896  fzrev3  9898  fzrevral  9916  fsumrev  11244
  Copyright terms: Public domain W3C validator