ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev Unicode version

Theorem fzrev 10084
Description: Reversal of start and end of a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.)
Assertion
Ref Expression
fzrev  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( J  -  K )  e.  ( M ... N ) ) )

Proof of Theorem fzrev
StepHypRef Expression
1 zre 9257 . . . . . . . 8  |-  ( J  e.  ZZ  ->  J  e.  RR )
2 zre 9257 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  RR )
3 zre 9257 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  RR )
4 suble 8397 . . . . . . . 8  |-  ( ( J  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
51, 2, 3, 4syl3an 1280 . . . . . . 7  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
653comr 1211 . . . . . 6  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  (
( J  -  K
)  <_  N  <->  ( J  -  N )  <_  K
) )
763expb 1204 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( ( J  -  K )  <_  N  <->  ( J  -  N )  <_  K
) )
87adantll 476 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  -  K )  <_  N  <->  ( J  -  N )  <_  K ) )
9 zre 9257 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  RR )
10 lesub 8398 . . . . . . 7  |-  ( ( M  e.  RR  /\  J  e.  RR  /\  K  e.  RR )  ->  ( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
119, 1, 2, 10syl3an 1280 . . . . . 6  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
12113expb 1204 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  ( M  <_  ( J  -  K
)  <->  K  <_  ( J  -  M ) ) )
1312adantlr 477 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( M  <_  ( J  -  K )  <->  K  <_  ( J  -  M ) ) )
148, 13anbi12d 473 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( ( J  -  K )  <_  N  /\  M  <_  ( J  -  K )
)  <->  ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
) ) )
15 ancom 266 . . 3  |-  ( ( ( J  -  K
)  <_  N  /\  M  <_  ( J  -  K ) )  <->  ( M  <_  ( J  -  K
)  /\  ( J  -  K )  <_  N
) )
1614, 15bitr3di 195 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
)  <->  ( M  <_ 
( J  -  K
)  /\  ( J  -  K )  <_  N
) ) )
17 simprr 531 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  K  e.  ZZ )
18 zsubcl 9294 . . . . 5  |-  ( ( J  e.  ZZ  /\  N  e.  ZZ )  ->  ( J  -  N
)  e.  ZZ )
1918ancoms 268 . . . 4  |-  ( ( N  e.  ZZ  /\  J  e.  ZZ )  ->  ( J  -  N
)  e.  ZZ )
2019ad2ant2lr 510 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  N
)  e.  ZZ )
21 zsubcl 9294 . . . . 5  |-  ( ( J  e.  ZZ  /\  M  e.  ZZ )  ->  ( J  -  M
)  e.  ZZ )
2221ancoms 268 . . . 4  |-  ( ( M  e.  ZZ  /\  J  e.  ZZ )  ->  ( J  -  M
)  e.  ZZ )
2322ad2ant2r 509 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  M
)  e.  ZZ )
24 elfz 10014 . . 3  |-  ( ( K  e.  ZZ  /\  ( J  -  N
)  e.  ZZ  /\  ( J  -  M
)  e.  ZZ )  ->  ( K  e.  ( ( J  -  N ) ... ( J  -  M )
)  <->  ( ( J  -  N )  <_  K  /\  K  <_  ( J  -  M )
) ) )
2517, 20, 23, 24syl3anc 1238 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( ( J  -  N )  <_  K  /\  K  <_ 
( J  -  M
) ) ) )
26 zsubcl 9294 . . . 4  |-  ( ( J  e.  ZZ  /\  K  e.  ZZ )  ->  ( J  -  K
)  e.  ZZ )
2726adantl 277 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( J  -  K
)  e.  ZZ )
28 simpll 527 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  M  e.  ZZ )
29 simplr 528 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  ->  N  e.  ZZ )
30 elfz 10014 . . 3  |-  ( ( ( J  -  K
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( J  -  K
)  e.  ( M ... N )  <->  ( M  <_  ( J  -  K
)  /\  ( J  -  K )  <_  N
) ) )
3127, 28, 29, 30syl3anc 1238 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( ( J  -  K )  e.  ( M ... N )  <-> 
( M  <_  ( J  -  K )  /\  ( J  -  K
)  <_  N )
) )
3216, 25, 313bitr4d 220 1  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( J  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( J  -  N
) ... ( J  -  M ) )  <->  ( J  -  K )  e.  ( M ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   RRcr 7810    <_ cle 7993    - cmin 8128   ZZcz 9253   ...cfz 10008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-fz 10009
This theorem is referenced by:  fzrev2  10085  fzrev3  10087  fzrevral  10105  fsumrev  11451  fprodrev  11627
  Copyright terms: Public domain W3C validator