ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds0lem Unicode version

Theorem dvds0lem 11737
Description: A lemma to assist theorems of  || with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0lem  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M
)  =  N )  ->  M  ||  N
)

Proof of Theorem dvds0lem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5848 . . . . . . . . 9  |-  ( x  =  K  ->  (
x  x.  M )  =  ( K  x.  M ) )
21eqeq1d 2174 . . . . . . . 8  |-  ( x  =  K  ->  (
( x  x.  M
)  =  N  <->  ( K  x.  M )  =  N ) )
32rspcev 2829 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  ( K  x.  M
)  =  N )  ->  E. x  e.  ZZ  ( x  x.  M
)  =  N )
43adantl 275 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  ->  E. x  e.  ZZ  ( x  x.  M
)  =  N )
5 divides 11725 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. x  e.  ZZ  (
x  x.  M )  =  N ) )
65adantr 274 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  -> 
( M  ||  N  <->  E. x  e.  ZZ  (
x  x.  M )  =  N ) )
74, 6mpbird 166 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  ->  M  ||  N )
87expr 373 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( K  x.  M )  =  N  ->  M  ||  N
) )
983impa 1184 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  x.  M
)  =  N  ->  M  ||  N ) )
1093comr 1201 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  =  N  ->  M  ||  N ) )
1110imp 123 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M
)  =  N )  ->  M  ||  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2444   class class class wbr 3981  (class class class)co 5841    x. cmul 7754   ZZcz 9187    || cdvds 11723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rex 2449  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-iota 5152  df-fv 5195  df-ov 5844  df-dvds 11724
This theorem is referenced by:  iddvds  11740  1dvds  11741  dvds0  11742  dvdsmul1  11749  dvdsmul2  11750  divalgmod  11860  oddpwdclemxy  12097  ex-dvds  13571
  Copyright terms: Public domain W3C validator