| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvds0lem | Unicode version | ||
| Description: A lemma to assist
theorems of |
| Ref | Expression |
|---|---|
| dvds0lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5964 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2215 |
. . . . . . . 8
|
| 3 | 2 | rspcev 2881 |
. . . . . . 7
|
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | divides 12175 |
. . . . . . 7
| |
| 6 | 5 | adantr 276 |
. . . . . 6
|
| 7 | 4, 6 | mpbird 167 |
. . . . 5
|
| 8 | 7 | expr 375 |
. . . 4
|
| 9 | 8 | 3impa 1197 |
. . 3
|
| 10 | 9 | 3comr 1214 |
. 2
|
| 11 | 10 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-iota 5241 df-fv 5288 df-ov 5960 df-dvds 12174 |
| This theorem is referenced by: iddvds 12190 1dvds 12191 dvds0 12192 dvdsmul1 12199 dvdsmul2 12200 divalgmod 12313 oddpwdclemxy 12566 ex-dvds 15805 |
| Copyright terms: Public domain | W3C validator |