ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds0lem Unicode version

Theorem dvds0lem 12187
Description: A lemma to assist theorems of  || with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0lem  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M
)  =  N )  ->  M  ||  N
)

Proof of Theorem dvds0lem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5964 . . . . . . . . 9  |-  ( x  =  K  ->  (
x  x.  M )  =  ( K  x.  M ) )
21eqeq1d 2215 . . . . . . . 8  |-  ( x  =  K  ->  (
( x  x.  M
)  =  N  <->  ( K  x.  M )  =  N ) )
32rspcev 2881 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  ( K  x.  M
)  =  N )  ->  E. x  e.  ZZ  ( x  x.  M
)  =  N )
43adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  ->  E. x  e.  ZZ  ( x  x.  M
)  =  N )
5 divides 12175 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. x  e.  ZZ  (
x  x.  M )  =  N ) )
65adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  -> 
( M  ||  N  <->  E. x  e.  ZZ  (
x  x.  M )  =  N ) )
74, 6mpbird 167 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  ->  M  ||  N )
87expr 375 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( K  x.  M )  =  N  ->  M  ||  N
) )
983impa 1197 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  x.  M
)  =  N  ->  M  ||  N ) )
1093comr 1214 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  =  N  ->  M  ||  N ) )
1110imp 124 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M
)  =  N )  ->  M  ||  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4051  (class class class)co 5957    x. cmul 7950   ZZcz 9392    || cdvds 12173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-iota 5241  df-fv 5288  df-ov 5960  df-dvds 12174
This theorem is referenced by:  iddvds  12190  1dvds  12191  dvds0  12192  dvdsmul1  12199  dvdsmul2  12200  divalgmod  12313  oddpwdclemxy  12566  ex-dvds  15805
  Copyright terms: Public domain W3C validator