ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds0lem Unicode version

Theorem dvds0lem 11983
Description: A lemma to assist theorems of  || with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0lem  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M
)  =  N )  ->  M  ||  N
)

Proof of Theorem dvds0lem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5932 . . . . . . . . 9  |-  ( x  =  K  ->  (
x  x.  M )  =  ( K  x.  M ) )
21eqeq1d 2205 . . . . . . . 8  |-  ( x  =  K  ->  (
( x  x.  M
)  =  N  <->  ( K  x.  M )  =  N ) )
32rspcev 2868 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  ( K  x.  M
)  =  N )  ->  E. x  e.  ZZ  ( x  x.  M
)  =  N )
43adantl 277 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  ->  E. x  e.  ZZ  ( x  x.  M
)  =  N )
5 divides 11971 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. x  e.  ZZ  (
x  x.  M )  =  N ) )
65adantr 276 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  -> 
( M  ||  N  <->  E. x  e.  ZZ  (
x  x.  M )  =  N ) )
74, 6mpbird 167 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( K  x.  M )  =  N ) )  ->  M  ||  N )
87expr 375 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( K  x.  M )  =  N  ->  M  ||  N
) )
983impa 1196 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( K  x.  M
)  =  N  ->  M  ||  N ) )
1093comr 1213 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  =  N  ->  M  ||  N ) )
1110imp 124 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M
)  =  N )  ->  M  ||  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034  (class class class)co 5925    x. cmul 7901   ZZcz 9343    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-iota 5220  df-fv 5267  df-ov 5928  df-dvds 11970
This theorem is referenced by:  iddvds  11986  1dvds  11987  dvds0  11988  dvdsmul1  11995  dvdsmul2  11996  divalgmod  12109  oddpwdclemxy  12362  ex-dvds  15460
  Copyright terms: Public domain W3C validator