Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvds0lem | Unicode version |
Description: A lemma to assist theorems of with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds0lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5848 | . . . . . . . . 9 | |
2 | 1 | eqeq1d 2174 | . . . . . . . 8 |
3 | 2 | rspcev 2829 | . . . . . . 7 |
4 | 3 | adantl 275 | . . . . . 6 |
5 | divides 11725 | . . . . . . 7 | |
6 | 5 | adantr 274 | . . . . . 6 |
7 | 4, 6 | mpbird 166 | . . . . 5 |
8 | 7 | expr 373 | . . . 4 |
9 | 8 | 3impa 1184 | . . 3 |
10 | 9 | 3comr 1201 | . 2 |
11 | 10 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2444 class class class wbr 3981 (class class class)co 5841 cmul 7754 cz 9187 cdvds 11723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-iota 5152 df-fv 5195 df-ov 5844 df-dvds 11724 |
This theorem is referenced by: iddvds 11740 1dvds 11741 dvds0 11742 dvdsmul1 11749 dvdsmul2 11750 divalgmod 11860 oddpwdclemxy 12097 ex-dvds 13571 |
Copyright terms: Public domain | W3C validator |