| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvds0lem | Unicode version | ||
| Description: A lemma to assist
theorems of |
| Ref | Expression |
|---|---|
| dvds0lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5941 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2213 |
. . . . . . . 8
|
| 3 | 2 | rspcev 2876 |
. . . . . . 7
|
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | divides 12019 |
. . . . . . 7
| |
| 6 | 5 | adantr 276 |
. . . . . 6
|
| 7 | 4, 6 | mpbird 167 |
. . . . 5
|
| 8 | 7 | expr 375 |
. . . 4
|
| 9 | 8 | 3impa 1196 |
. . 3
|
| 10 | 9 | 3comr 1213 |
. 2
|
| 11 | 10 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-iota 5229 df-fv 5276 df-ov 5937 df-dvds 12018 |
| This theorem is referenced by: iddvds 12034 1dvds 12035 dvds0 12036 dvdsmul1 12043 dvdsmul2 12044 divalgmod 12157 oddpwdclemxy 12410 ex-dvds 15530 |
| Copyright terms: Public domain | W3C validator |