ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absdifle Unicode version

Theorem absdifle 11604
Description: The absolute value of a difference and 'less than or equal to' relation. (Contributed by Paul Chapman, 18-Sep-2007.)
Assertion
Ref Expression
absdifle  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( abs `  ( A  -  B )
)  <_  C  <->  ( ( B  -  C )  <_  A  /\  A  <_ 
( B  +  C
) ) ) )

Proof of Theorem absdifle
StepHypRef Expression
1 resubcl 8410 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  -  B
)  e.  RR )
2 absle 11600 . . 3  |-  ( ( ( A  -  B
)  e.  RR  /\  C  e.  RR )  ->  ( ( abs `  ( A  -  B )
)  <_  C  <->  ( -u C  <_  ( A  -  B
)  /\  ( A  -  B )  <_  C
) ) )
31, 2stoic3 1473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( abs `  ( A  -  B )
)  <_  C  <->  ( -u C  <_  ( A  -  B
)  /\  ( A  -  B )  <_  C
) ) )
4 renegcl 8407 . . . . . 6  |-  ( C  e.  RR  ->  -u C  e.  RR )
5 leaddsub2 8586 . . . . . 6  |-  ( ( B  e.  RR  /\  -u C  e.  RR  /\  A  e.  RR )  ->  ( ( B  +  -u C )  <_  A  <->  -u C  <_  ( A  -  B ) ) )
64, 5syl3an2 1305 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  A  e.  RR )  ->  (
( B  +  -u C )  <_  A  <->  -u C  <_  ( A  -  B ) ) )
763comr 1235 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  -u C )  <_  A  <->  -u C  <_  ( A  -  B ) ) )
8 recn 8132 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
9 recn 8132 . . . . . . 7  |-  ( C  e.  RR  ->  C  e.  CC )
10 negsub 8394 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  -u C )  =  ( B  -  C ) )
118, 9, 10syl2an 289 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  +  -u C )  =  ( B  -  C ) )
12113adant1 1039 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  -u C )  =  ( B  -  C ) )
1312breq1d 4093 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( B  +  -u C )  <_  A  <->  ( B  -  C )  <_  A ) )
147, 13bitr3d 190 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -u C  <_  ( A  -  B )  <->  ( B  -  C )  <_  A
) )
15 lesubadd2 8582 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  -  B
)  <_  C  <->  A  <_  ( B  +  C ) ) )
1614, 15anbi12d 473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( -u C  <_  ( A  -  B )  /\  ( A  -  B
)  <_  C )  <->  ( ( B  -  C
)  <_  A  /\  A  <_  ( B  +  C ) ) ) )
173, 16bitrd 188 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( abs `  ( A  -  B )
)  <_  C  <->  ( ( B  -  C )  <_  A  /\  A  <_ 
( B  +  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998    + caddc 8002    <_ cle 8182    - cmin 8317   -ucneg 8318   abscabs 11508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-rp 9850  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510
This theorem is referenced by:  elicc4abs  11605  absdifled  11690
  Copyright terms: Public domain W3C validator