ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidrelem Unicode version

Theorem dvidrelem 15208
Description: Lemma for dvidre 15213 and dvconstre 15212. Analogue of dvidlemap 15207 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidrelem.1  |-  ( ph  ->  F : RR --> CC )
dvidrelem.2  |-  ( (
ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
dvidrelem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidrelem  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
X.  { B }
) )
Distinct variable groups:    x, B, z   
x, F, z    ph, x, z

Proof of Theorem dvidrelem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidrelem.1 . . . . . 6  |-  ( ph  ->  F : RR --> CC )
2 reex 8066 . . . . . . 7  |-  RR  e.  _V
3 cnex 8056 . . . . . . 7  |-  CC  e.  _V
42, 3fpm 6775 . . . . . 6  |-  ( F : RR --> CC  ->  F  e.  ( CC  ^pm  RR ) )
51, 4syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
6 dvfpm 15205 . . . . 5  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
8 ax-resscn 8024 . . . . . . . 8  |-  RR  C_  CC
98a1i 9 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
10 ssidd 3215 . . . . . . 7  |-  ( ph  ->  RR  C_  RR )
119, 1, 10dvbss 15201 . . . . . 6  |-  ( ph  ->  dom  ( RR  _D  F )  C_  RR )
12 reldvg 15195 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR ) )  ->  Rel  ( RR  _D  F
) )
139, 5, 12syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( RR  _D  F ) )
1413adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  Rel  ( RR  _D  F ) )
15 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  RR )
16 retop 15040 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  e.  Top
17 uniretop 15041 . . . . . . . . . . 11  |-  RR  =  U. ( topGen `  ran  (,) )
1817ntrtop 14644 . . . . . . . . . 10  |-  ( (
topGen `  ran  (,) )  e.  Top  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  RR )  =  RR )
1916, 18ax-mp 5 . . . . . . . . 9  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  RR )  =  RR
2015, 19eleqtrrdi 2300 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  RR )
)
21 limcresi 15182 . . . . . . . . . 10  |-  ( ( z  e.  RR  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x } ) lim CC  x )
22 dvidrelem.3 . . . . . . . . . . . 12  |-  B  e.  CC
23 ssidd 3215 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  CC  C_  CC )
24 cncfmptc 15112 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  RR  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  RR  |->  B )  e.  ( RR
-cn-> CC ) )
2522, 8, 23, 24mp3an12i 1354 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( z  e.  RR  |->  B )  e.  ( RR -cn-> CC ) )
26 eqidd 2207 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
2725, 15, 26cnmptlimc 15190 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  B  e.  ( ( z  e.  RR  |->  B ) lim CC  x ) )
2821, 27sselid 3192 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  B  e.  ( ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
) lim CC  x )
)
29 breq1 4050 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
3029elrab 2930 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  RR  |  w #  x } 
<->  ( z  e.  RR  /\  z #  x ) )
31 dvidrelem.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
32313exp2 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  RR  ->  ( z  e.  RR  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
3332imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
z  e.  RR  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
3430, 33sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  z  e.  { w  e.  RR  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
3534mpteq2dva 4138 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  RR  |  w #  x }  |->  B ) )
36 ssrab2 3279 . . . . . . . . . . . 12  |-  { w  e.  RR  |  w #  x }  C_  RR
37 resmpt 5012 . . . . . . . . . . . 12  |-  ( { w  e.  RR  |  w #  x }  C_  RR  ->  ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
)  =  ( z  e.  { w  e.  RR  |  w #  x }  |->  B ) )
3836, 37ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x } )  =  ( z  e.  { w  e.  RR  |  w #  x }  |->  B )
3935, 38eqtr4di 2257 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
) )
4039oveq1d 5966 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
) lim CC  x )
)
4128, 40eleqtrrd 2286 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  B  e.  ( ( z  e. 
{ w  e.  RR  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
42 eqid 2206 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
4342tgioo2cntop 15073 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( abs  o. 
-  ) )t  RR )
44 eqid 2206 . . . . . . . . 9  |-  ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  RR  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
458a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  RR  C_  CC )
461adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  F : RR
--> CC )
47 ssidd 3215 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  RR  C_  RR )
4843, 42, 44, 45, 46, 47eldvap 15198 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( x ( RR  _D  F
) B  <->  ( x  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  RR )  /\  B  e.  (
( z  e.  {
w  e.  RR  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
4920, 41, 48mpbir2and 947 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  x ( RR  _D  F ) B )
50 releldm 4918 . . . . . . 7  |-  ( ( Rel  ( RR  _D  F )  /\  x
( RR  _D  F
) B )  ->  x  e.  dom  ( RR 
_D  F ) )
5114, 49, 50syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  x  e. 
dom  ( RR  _D  F ) )
5211, 51eqelssd 3213 . . . . 5  |-  ( ph  ->  dom  ( RR  _D  F )  =  RR )
5352feq2d 5419 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : RR --> CC ) )
547, 53mpbid 147 . . 3  |-  ( ph  ->  ( RR  _D  F
) : RR --> CC )
5554ffnd 5432 . 2  |-  ( ph  ->  ( RR  _D  F
)  Fn  RR )
56 fnconstg 5480 . . 3  |-  ( B  e.  CC  ->  ( RR  X.  { B }
)  Fn  RR )
5722, 56mp1i 10 . 2  |-  ( ph  ->  ( RR  X.  { B } )  Fn  RR )
587adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC )
5958ffund 5435 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  Fun  ( RR  _D  F ) )
60 funbrfvb 5628 . . . . 5  |-  ( ( Fun  ( RR  _D  F )  /\  x  e.  dom  ( RR  _D  F ) )  -> 
( ( ( RR 
_D  F ) `  x )  =  B  <-> 
x ( RR  _D  F ) B ) )
6159, 51, 60syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( ( RR  _D  F
) `  x )  =  B  <->  x ( RR 
_D  F ) B ) )
6249, 61mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( RR  _D  F ) `
 x )  =  B )
6322a1i 9 . . . 4  |-  ( ph  ->  B  e.  CC )
64 fvconst2g 5805 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  RR )  ->  ( ( RR  X.  { B } ) `  x )  =  B )
6563, 64sylan 283 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( RR  X.  { B } ) `  x
)  =  B )
6662, 65eqtr4d 2242 . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( RR  _D  F ) `
 x )  =  ( ( RR  X.  { B } ) `  x ) )
6755, 57, 66eqfnfvd 5687 1  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   {crab 2489    C_ wss 3167   {csn 3634   class class class wbr 4047    |-> cmpt 4109    X. cxp 4677   dom cdm 4679   ran crn 4680    |` cres 4681    o. ccom 4683   Rel wrel 4684   Fun wfun 5270    Fn wfn 5271   -->wf 5272   ` cfv 5276  (class class class)co 5951    ^pm cpm 6743   CCcc 7930   RRcr 7931    - cmin 8250   # cap 8661    / cdiv 8752   (,)cioo 10017   abscabs 11352   topGenctg 13130   MetOpencmopn 14347   Topctop 14513   intcnt 14609   -cn->ccncf 15086   lim CC climc 15170    _D cdv 15171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-pm 6745  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-ioo 10021  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-cncf 15087  df-limced 15172  df-dvap 15173
This theorem is referenced by:  dvconstre  15212  dvidre  15213
  Copyright terms: Public domain W3C validator