| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dvidrelem | Unicode version | ||
| Description: Lemma for dvidre 14933 and dvconstre 14932. Analogue of dvidlemap 14927 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| dvidrelem.1 | 
 | 
| dvidrelem.2 | 
 | 
| dvidrelem.3 | 
 | 
| Ref | Expression | 
|---|---|
| dvidrelem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dvidrelem.1 | 
. . . . . 6
 | |
| 2 | reex 8013 | 
. . . . . . 7
 | |
| 3 | cnex 8003 | 
. . . . . . 7
 | |
| 4 | 2, 3 | fpm 6740 | 
. . . . . 6
 | 
| 5 | 1, 4 | syl 14 | 
. . . . 5
 | 
| 6 | dvfpm 14925 | 
. . . . 5
 | |
| 7 | 5, 6 | syl 14 | 
. . . 4
 | 
| 8 | ax-resscn 7971 | 
. . . . . . . 8
 | |
| 9 | 8 | a1i 9 | 
. . . . . . 7
 | 
| 10 | ssidd 3204 | 
. . . . . . 7
 | |
| 11 | 9, 1, 10 | dvbss 14921 | 
. . . . . 6
 | 
| 12 | reldvg 14915 | 
. . . . . . . . 9
 | |
| 13 | 9, 5, 12 | syl2anc 411 | 
. . . . . . . 8
 | 
| 14 | 13 | adantr 276 | 
. . . . . . 7
 | 
| 15 | simpr 110 | 
. . . . . . . . 9
 | |
| 16 | retop 14760 | 
. . . . . . . . . 10
 | |
| 17 | uniretop 14761 | 
. . . . . . . . . . 11
 | |
| 18 | 17 | ntrtop 14364 | 
. . . . . . . . . 10
 | 
| 19 | 16, 18 | ax-mp 5 | 
. . . . . . . . 9
 | 
| 20 | 15, 19 | eleqtrrdi 2290 | 
. . . . . . . 8
 | 
| 21 | limcresi 14902 | 
. . . . . . . . . 10
 | |
| 22 | dvidrelem.3 | 
. . . . . . . . . . . 12
 | |
| 23 | ssidd 3204 | 
. . . . . . . . . . . 12
 | |
| 24 | cncfmptc 14832 | 
. . . . . . . . . . . 12
 | |
| 25 | 22, 8, 23, 24 | mp3an12i 1352 | 
. . . . . . . . . . 11
 | 
| 26 | eqidd 2197 | 
. . . . . . . . . . 11
 | |
| 27 | 25, 15, 26 | cnmptlimc 14910 | 
. . . . . . . . . 10
 | 
| 28 | 21, 27 | sselid 3181 | 
. . . . . . . . 9
 | 
| 29 | breq1 4036 | 
. . . . . . . . . . . . . 14
 | |
| 30 | 29 | elrab 2920 | 
. . . . . . . . . . . . 13
 | 
| 31 | dvidrelem.2 | 
. . . . . . . . . . . . . . 15
 | |
| 32 | 31 | 3exp2 1227 | 
. . . . . . . . . . . . . 14
 | 
| 33 | 32 | imp43 355 | 
. . . . . . . . . . . . 13
 | 
| 34 | 30, 33 | sylan2b 287 | 
. . . . . . . . . . . 12
 | 
| 35 | 34 | mpteq2dva 4123 | 
. . . . . . . . . . 11
 | 
| 36 | ssrab2 3268 | 
. . . . . . . . . . . 12
 | |
| 37 | resmpt 4994 | 
. . . . . . . . . . . 12
 | |
| 38 | 36, 37 | ax-mp 5 | 
. . . . . . . . . . 11
 | 
| 39 | 35, 38 | eqtr4di 2247 | 
. . . . . . . . . 10
 | 
| 40 | 39 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 41 | 28, 40 | eleqtrrd 2276 | 
. . . . . . . 8
 | 
| 42 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 43 | 42 | tgioo2cntop 14793 | 
. . . . . . . . 9
 | 
| 44 | eqid 2196 | 
. . . . . . . . 9
 | |
| 45 | 8 | a1i 9 | 
. . . . . . . . 9
 | 
| 46 | 1 | adantr 276 | 
. . . . . . . . 9
 | 
| 47 | ssidd 3204 | 
. . . . . . . . 9
 | |
| 48 | 43, 42, 44, 45, 46, 47 | eldvap 14918 | 
. . . . . . . 8
 | 
| 49 | 20, 41, 48 | mpbir2and 946 | 
. . . . . . 7
 | 
| 50 | releldm 4901 | 
. . . . . . 7
 | |
| 51 | 14, 49, 50 | syl2anc 411 | 
. . . . . 6
 | 
| 52 | 11, 51 | eqelssd 3202 | 
. . . . 5
 | 
| 53 | 52 | feq2d 5395 | 
. . . 4
 | 
| 54 | 7, 53 | mpbid 147 | 
. . 3
 | 
| 55 | 54 | ffnd 5408 | 
. 2
 | 
| 56 | fnconstg 5455 | 
. . 3
 | |
| 57 | 22, 56 | mp1i 10 | 
. 2
 | 
| 58 | 7 | adantr 276 | 
. . . . . 6
 | 
| 59 | 58 | ffund 5411 | 
. . . . 5
 | 
| 60 | funbrfvb 5603 | 
. . . . 5
 | |
| 61 | 59, 51, 60 | syl2anc 411 | 
. . . 4
 | 
| 62 | 49, 61 | mpbird 167 | 
. . 3
 | 
| 63 | 22 | a1i 9 | 
. . . 4
 | 
| 64 | fvconst2g 5776 | 
. . . 4
 | |
| 65 | 63, 64 | sylan 283 | 
. . 3
 | 
| 66 | 62, 65 | eqtr4d 2232 | 
. 2
 | 
| 67 | 55, 57, 66 | eqfnfvd 5662 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pm 6710 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-xneg 9847 df-xadd 9848 df-ioo 9967 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-rest 12912 df-topgen 12931 df-psmet 14099 df-xmet 14100 df-met 14101 df-bl 14102 df-mopn 14103 df-top 14234 df-topon 14247 df-bases 14279 df-ntr 14332 df-cn 14424 df-cnp 14425 df-cncf 14807 df-limced 14892 df-dvap 14893 | 
| This theorem is referenced by: dvconstre 14932 dvidre 14933 | 
| Copyright terms: Public domain | W3C validator |