ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidrelem Unicode version

Theorem dvidrelem 15374
Description: Lemma for dvidre 15379 and dvconstre 15378. Analogue of dvidlemap 15373 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidrelem.1  |-  ( ph  ->  F : RR --> CC )
dvidrelem.2  |-  ( (
ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
dvidrelem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidrelem  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
X.  { B }
) )
Distinct variable groups:    x, B, z   
x, F, z    ph, x, z

Proof of Theorem dvidrelem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidrelem.1 . . . . . 6  |-  ( ph  ->  F : RR --> CC )
2 reex 8141 . . . . . . 7  |-  RR  e.  _V
3 cnex 8131 . . . . . . 7  |-  CC  e.  _V
42, 3fpm 6836 . . . . . 6  |-  ( F : RR --> CC  ->  F  e.  ( CC  ^pm  RR ) )
51, 4syl 14 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  RR ) )
6 dvfpm 15371 . . . . 5  |-  ( F  e.  ( CC  ^pm  RR )  ->  ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( RR  _D  F
) : dom  ( RR  _D  F ) --> CC )
8 ax-resscn 8099 . . . . . . . 8  |-  RR  C_  CC
98a1i 9 . . . . . . 7  |-  ( ph  ->  RR  C_  CC )
10 ssidd 3245 . . . . . . 7  |-  ( ph  ->  RR  C_  RR )
119, 1, 10dvbss 15367 . . . . . 6  |-  ( ph  ->  dom  ( RR  _D  F )  C_  RR )
12 reldvg 15361 . . . . . . . . 9  |-  ( ( RR  C_  CC  /\  F  e.  ( CC  ^pm  RR ) )  ->  Rel  ( RR  _D  F
) )
139, 5, 12syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( RR  _D  F ) )
1413adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  Rel  ( RR  _D  F ) )
15 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  RR )
16 retop 15206 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  e.  Top
17 uniretop 15207 . . . . . . . . . . 11  |-  RR  =  U. ( topGen `  ran  (,) )
1817ntrtop 14810 . . . . . . . . . 10  |-  ( (
topGen `  ran  (,) )  e.  Top  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  RR )  =  RR )
1916, 18ax-mp 5 . . . . . . . . 9  |-  ( ( int `  ( topGen ` 
ran  (,) ) ) `  RR )  =  RR
2015, 19eleqtrrdi 2323 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  RR )
)
21 limcresi 15348 . . . . . . . . . 10  |-  ( ( z  e.  RR  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x } ) lim CC  x )
22 dvidrelem.3 . . . . . . . . . . . 12  |-  B  e.  CC
23 ssidd 3245 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  RR )  ->  CC  C_  CC )
24 cncfmptc 15278 . . . . . . . . . . . 12  |-  ( ( B  e.  CC  /\  RR  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  RR  |->  B )  e.  ( RR
-cn-> CC ) )
2522, 8, 23, 24mp3an12i 1375 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( z  e.  RR  |->  B )  e.  ( RR -cn-> CC ) )
26 eqidd 2230 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
2725, 15, 26cnmptlimc 15356 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  B  e.  ( ( z  e.  RR  |->  B ) lim CC  x ) )
2821, 27sselid 3222 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  B  e.  ( ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
) lim CC  x )
)
29 breq1 4086 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
3029elrab 2959 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  RR  |  w #  x } 
<->  ( z  e.  RR  /\  z #  x ) )
31 dvidrelem.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR  /\  z  e.  RR  /\  z #  x ) )  ->  (
( ( F `  z )  -  ( F `  x )
)  /  ( z  -  x ) )  =  B )
32313exp2 1249 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  RR  ->  ( z  e.  RR  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
3332imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
z  e.  RR  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
3430, 33sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR )  /\  z  e.  { w  e.  RR  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
3534mpteq2dva 4174 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  RR )  ->  ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  RR  |  w #  x }  |->  B ) )
36 ssrab2 3309 . . . . . . . . . . . 12  |-  { w  e.  RR  |  w #  x }  C_  RR
37 resmpt 5053 . . . . . . . . . . . 12  |-  ( { w  e.  RR  |  w #  x }  C_  RR  ->  ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
)  =  ( z  e.  { w  e.  RR  |  w #  x }  |->  B ) )
3836, 37ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x } )  =  ( z  e.  { w  e.  RR  |  w #  x }  |->  B )
3935, 38eqtr4di 2280 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  RR )  ->  ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
) )
4039oveq1d 6022 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) ) lim CC  x )  =  ( ( ( z  e.  RR  |->  B )  |`  { w  e.  RR  |  w #  x }
) lim CC  x )
)
4128, 40eleqtrrd 2309 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  B  e.  ( ( z  e. 
{ w  e.  RR  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
42 eqid 2229 . . . . . . . . . 10  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
4342tgioo2cntop 15239 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  ( ( MetOpen `  ( abs  o. 
-  ) )t  RR )
44 eqid 2229 . . . . . . . . 9  |-  ( z  e.  { w  e.  RR  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  RR  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
458a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  RR  C_  CC )
461adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  F : RR
--> CC )
47 ssidd 3245 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  RR  C_  RR )
4843, 42, 44, 45, 46, 47eldvap 15364 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( x ( RR  _D  F
) B  <->  ( x  e.  ( ( int `  ( topGen `
 ran  (,) )
) `  RR )  /\  B  e.  (
( z  e.  {
w  e.  RR  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
4920, 41, 48mpbir2and 950 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  x ( RR  _D  F ) B )
50 releldm 4959 . . . . . . 7  |-  ( ( Rel  ( RR  _D  F )  /\  x
( RR  _D  F
) B )  ->  x  e.  dom  ( RR 
_D  F ) )
5114, 49, 50syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  x  e. 
dom  ( RR  _D  F ) )
5211, 51eqelssd 3243 . . . . 5  |-  ( ph  ->  dom  ( RR  _D  F )  =  RR )
5352feq2d 5461 . . . 4  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : RR --> CC ) )
547, 53mpbid 147 . . 3  |-  ( ph  ->  ( RR  _D  F
) : RR --> CC )
5554ffnd 5474 . 2  |-  ( ph  ->  ( RR  _D  F
)  Fn  RR )
56 fnconstg 5525 . . 3  |-  ( B  e.  CC  ->  ( RR  X.  { B }
)  Fn  RR )
5722, 56mp1i 10 . 2  |-  ( ph  ->  ( RR  X.  { B } )  Fn  RR )
587adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC )
5958ffund 5477 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  Fun  ( RR  _D  F ) )
60 funbrfvb 5676 . . . . 5  |-  ( ( Fun  ( RR  _D  F )  /\  x  e.  dom  ( RR  _D  F ) )  -> 
( ( ( RR 
_D  F ) `  x )  =  B  <-> 
x ( RR  _D  F ) B ) )
6159, 51, 60syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( ( RR  _D  F
) `  x )  =  B  <->  x ( RR 
_D  F ) B ) )
6249, 61mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( RR  _D  F ) `
 x )  =  B )
6322a1i 9 . . . 4  |-  ( ph  ->  B  e.  CC )
64 fvconst2g 5857 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  RR )  ->  ( ( RR  X.  { B } ) `  x )  =  B )
6563, 64sylan 283 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( RR  X.  { B } ) `  x
)  =  B )
6662, 65eqtr4d 2265 . 2  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( RR  _D  F ) `
 x )  =  ( ( RR  X.  { B } ) `  x ) )
6755, 57, 66eqfnfvd 5737 1  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   {csn 3666   class class class wbr 4083    |-> cmpt 4145    X. cxp 4717   dom cdm 4719   ran crn 4720    |` cres 4721    o. ccom 4723   Rel wrel 4724   Fun wfun 5312    Fn wfn 5313   -->wf 5314   ` cfv 5318  (class class class)co 6007    ^pm cpm 6804   CCcc 8005   RRcr 8006    - cmin 8325   # cap 8736    / cdiv 8827   (,)cioo 10092   abscabs 11516   topGenctg 13295   MetOpencmopn 14513   Topctop 14679   intcnt 14775   -cn->ccncf 15252   lim CC climc 15336    _D cdv 15337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-pm 6806  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-ioo 10096  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-rest 13282  df-topgen 13301  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-top 14680  df-topon 14693  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-cncf 15253  df-limced 15338  df-dvap 15339
This theorem is referenced by:  dvconstre  15378  dvidre  15379
  Copyright terms: Public domain W3C validator