| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvidrelem | Unicode version | ||
| Description: Lemma for dvidre 15213 and dvconstre 15212. Analogue of dvidlemap 15207 for real numbers rather than complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| dvidrelem.1 |
|
| dvidrelem.2 |
|
| dvidrelem.3 |
|
| Ref | Expression |
|---|---|
| dvidrelem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvidrelem.1 |
. . . . . 6
| |
| 2 | reex 8066 |
. . . . . . 7
| |
| 3 | cnex 8056 |
. . . . . . 7
| |
| 4 | 2, 3 | fpm 6775 |
. . . . . 6
|
| 5 | 1, 4 | syl 14 |
. . . . 5
|
| 6 | dvfpm 15205 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | ax-resscn 8024 |
. . . . . . . 8
| |
| 9 | 8 | a1i 9 |
. . . . . . 7
|
| 10 | ssidd 3215 |
. . . . . . 7
| |
| 11 | 9, 1, 10 | dvbss 15201 |
. . . . . 6
|
| 12 | reldvg 15195 |
. . . . . . . . 9
| |
| 13 | 9, 5, 12 | syl2anc 411 |
. . . . . . . 8
|
| 14 | 13 | adantr 276 |
. . . . . . 7
|
| 15 | simpr 110 |
. . . . . . . . 9
| |
| 16 | retop 15040 |
. . . . . . . . . 10
| |
| 17 | uniretop 15041 |
. . . . . . . . . . 11
| |
| 18 | 17 | ntrtop 14644 |
. . . . . . . . . 10
|
| 19 | 16, 18 | ax-mp 5 |
. . . . . . . . 9
|
| 20 | 15, 19 | eleqtrrdi 2300 |
. . . . . . . 8
|
| 21 | limcresi 15182 |
. . . . . . . . . 10
| |
| 22 | dvidrelem.3 |
. . . . . . . . . . . 12
| |
| 23 | ssidd 3215 |
. . . . . . . . . . . 12
| |
| 24 | cncfmptc 15112 |
. . . . . . . . . . . 12
| |
| 25 | 22, 8, 23, 24 | mp3an12i 1354 |
. . . . . . . . . . 11
|
| 26 | eqidd 2207 |
. . . . . . . . . . 11
| |
| 27 | 25, 15, 26 | cnmptlimc 15190 |
. . . . . . . . . 10
|
| 28 | 21, 27 | sselid 3192 |
. . . . . . . . 9
|
| 29 | breq1 4050 |
. . . . . . . . . . . . . 14
| |
| 30 | 29 | elrab 2930 |
. . . . . . . . . . . . 13
|
| 31 | dvidrelem.2 |
. . . . . . . . . . . . . . 15
| |
| 32 | 31 | 3exp2 1228 |
. . . . . . . . . . . . . 14
|
| 33 | 32 | imp43 355 |
. . . . . . . . . . . . 13
|
| 34 | 30, 33 | sylan2b 287 |
. . . . . . . . . . . 12
|
| 35 | 34 | mpteq2dva 4138 |
. . . . . . . . . . 11
|
| 36 | ssrab2 3279 |
. . . . . . . . . . . 12
| |
| 37 | resmpt 5012 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . . 11
|
| 39 | 35, 38 | eqtr4di 2257 |
. . . . . . . . . 10
|
| 40 | 39 | oveq1d 5966 |
. . . . . . . . 9
|
| 41 | 28, 40 | eleqtrrd 2286 |
. . . . . . . 8
|
| 42 | eqid 2206 |
. . . . . . . . . 10
| |
| 43 | 42 | tgioo2cntop 15073 |
. . . . . . . . 9
|
| 44 | eqid 2206 |
. . . . . . . . 9
| |
| 45 | 8 | a1i 9 |
. . . . . . . . 9
|
| 46 | 1 | adantr 276 |
. . . . . . . . 9
|
| 47 | ssidd 3215 |
. . . . . . . . 9
| |
| 48 | 43, 42, 44, 45, 46, 47 | eldvap 15198 |
. . . . . . . 8
|
| 49 | 20, 41, 48 | mpbir2and 947 |
. . . . . . 7
|
| 50 | releldm 4918 |
. . . . . . 7
| |
| 51 | 14, 49, 50 | syl2anc 411 |
. . . . . 6
|
| 52 | 11, 51 | eqelssd 3213 |
. . . . 5
|
| 53 | 52 | feq2d 5419 |
. . . 4
|
| 54 | 7, 53 | mpbid 147 |
. . 3
|
| 55 | 54 | ffnd 5432 |
. 2
|
| 56 | fnconstg 5480 |
. . 3
| |
| 57 | 22, 56 | mp1i 10 |
. 2
|
| 58 | 7 | adantr 276 |
. . . . . 6
|
| 59 | 58 | ffund 5435 |
. . . . 5
|
| 60 | funbrfvb 5628 |
. . . . 5
| |
| 61 | 59, 51, 60 | syl2anc 411 |
. . . 4
|
| 62 | 49, 61 | mpbird 167 |
. . 3
|
| 63 | 22 | a1i 9 |
. . . 4
|
| 64 | fvconst2g 5805 |
. . . 4
| |
| 65 | 63, 64 | sylan 283 |
. . 3
|
| 66 | 62, 65 | eqtr4d 2242 |
. 2
|
| 67 | 55, 57, 66 | eqfnfvd 5687 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-map 6744 df-pm 6745 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-ioo 10021 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-ntr 14612 df-cn 14704 df-cnp 14705 df-cncf 15087 df-limced 15172 df-dvap 15173 |
| This theorem is referenced by: dvconstre 15212 dvidre 15213 |
| Copyright terms: Public domain | W3C validator |