ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgghm2 Unicode version

Theorem mulgghm2 14370
Description: The powers of a group element give a homomorphism from 
ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgghm2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mulgghm2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Distinct variable groups:    B, n    R, n    .x. , n    .1. , n
Allowed substitution hint:    F( n)

Proof of Theorem mulgghm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  R  e.  Grp )
2 zringgrp 14357 . . 3  |-ring  e.  Grp
31, 2jctil 312 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
(ring 
e.  Grp  /\  R  e. 
Grp ) )
4 mulgghm2.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
64, 5mulgcl 13475 . . . . . 6  |-  ( ( R  e.  Grp  /\  n  e.  ZZ  /\  .1.  e.  B )  ->  (
n  .x.  .1.  )  e.  B )
763expa 1206 . . . . 5  |-  ( ( ( R  e.  Grp  /\  n  e.  ZZ )  /\  .1.  e.  B
)  ->  ( n  .x.  .1.  )  e.  B
)
87an32s 568 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  n  e.  ZZ )  ->  ( n  .x.  .1.  )  e.  B
)
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
108, 9fmptd 5734 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F : ZZ --> B )
11 eqid 2205 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
124, 5, 11mulgdir 13490 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  B ) )  ->  ( ( x  +  y )  .x.  .1.  )  =  (
( x  .x.  .1.  ) ( +g  `  R
) ( y  .x.  .1.  ) ) )
13123exp2 1228 . . . . . . 7  |-  ( R  e.  Grp  ->  (
x  e.  ZZ  ->  ( y  e.  ZZ  ->  (  .1.  e.  B  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) ) ) ) )
1413imp42 354 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  .1.  e.  B )  ->  (
( x  +  y )  .x.  .1.  )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
1514an32s 568 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) )
16 oveq1 5951 . . . . . 6  |-  ( n  =  ( x  +  y )  ->  (
n  .x.  .1.  )  =  ( ( x  +  y )  .x.  .1.  ) )
17 zaddcl 9412 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
1817adantl 277 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  +  y )  e.  ZZ )
19 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  R  e.  Grp )
20 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  .1.  e.  B )
214, 5, 19, 18, 20mulgcld 13480 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  e.  B )
229, 16, 18, 21fvmptd3 5673 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( x  +  y ) 
.x.  .1.  ) )
23 oveq1 5951 . . . . . . 7  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
24 simprl 529 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  ZZ )
254, 5, 19, 24, 20mulgcld 13480 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  .x.  .1.  )  e.  B )
269, 23, 24, 25fvmptd3 5673 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  x
)  =  ( x 
.x.  .1.  ) )
27 oveq1 5951 . . . . . . 7  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
28 simprr 531 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
y  e.  ZZ )
294, 5, 19, 28, 20mulgcld 13480 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( y  .x.  .1.  )  e.  B )
309, 27, 28, 29fvmptd3 5673 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  y
)  =  ( y 
.x.  .1.  ) )
3126, 30oveq12d 5962 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
3215, 22, 313eqtr4d 2248 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( F `  x ) ( +g  `  R
) ( F `  y ) ) )
3332ralrimivva 2588 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y ) )  =  ( ( F `
 x ) ( +g  `  R ) ( F `  y
) ) )
3410, 33jca 306 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( F : ZZ --> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) )
35 zringbas 14358 . . 3  |-  ZZ  =  ( Base ` ring )
36 zringplusg 14359 . . 3  |-  +  =  ( +g  ` ring )
3735, 4, 36, 11isghm 13579 . 2  |-  ( F  e.  (ring  GrpHom  R )  <->  ( (ring  e.  Grp  /\  R  e.  Grp )  /\  ( F : ZZ
--> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) ) )
383, 34, 37sylanbrc 417 1  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484    |-> cmpt 4105   -->wf 5267   ` cfv 5271  (class class class)co 5944    + caddc 7928   ZZcz 9372   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332  .gcmg 13455    GrpHom cghm 13576  ℤringczring 14352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-uz 9649  df-rp 9776  df-fz 10131  df-seqfrec 10593  df-cj 11153  df-abs 11310  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-starv 12924  df-tset 12928  df-ple 12929  df-ds 12931  df-unif 12932  df-0g 13090  df-topgen 13092  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-mulg 13456  df-subg 13506  df-ghm 13577  df-cmn 13622  df-mgp 13683  df-ur 13722  df-ring 13760  df-cring 13761  df-subrg 13981  df-bl 14308  df-mopn 14309  df-fg 14311  df-metu 14312  df-cnfld 14319  df-zring 14353
This theorem is referenced by:  mulgrhm  14371
  Copyright terms: Public domain W3C validator