| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgghm2 | Unicode version | ||
| Description: The powers of a group
element give a homomorphism from |
| Ref | Expression |
|---|---|
| mulgghm2.m |
|
| mulgghm2.f |
|
| mulgghm2.b |
|
| Ref | Expression |
|---|---|
| mulgghm2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | zringgrp 14151 |
. . 3
| |
| 3 | 1, 2 | jctil 312 |
. 2
|
| 4 | mulgghm2.b |
. . . . . . 7
| |
| 5 | mulgghm2.m |
. . . . . . 7
| |
| 6 | 4, 5 | mulgcl 13269 |
. . . . . 6
|
| 7 | 6 | 3expa 1205 |
. . . . 5
|
| 8 | 7 | an32s 568 |
. . . 4
|
| 9 | mulgghm2.f |
. . . 4
| |
| 10 | 8, 9 | fmptd 5716 |
. . 3
|
| 11 | eqid 2196 |
. . . . . . . . 9
| |
| 12 | 4, 5, 11 | mulgdir 13284 |
. . . . . . . 8
|
| 13 | 12 | 3exp2 1227 |
. . . . . . 7
|
| 14 | 13 | imp42 354 |
. . . . . 6
|
| 15 | 14 | an32s 568 |
. . . . 5
|
| 16 | oveq1 5929 |
. . . . . 6
| |
| 17 | zaddcl 9366 |
. . . . . . 7
| |
| 18 | 17 | adantl 277 |
. . . . . 6
|
| 19 | simpll 527 |
. . . . . . 7
| |
| 20 | simplr 528 |
. . . . . . 7
| |
| 21 | 4, 5, 19, 18, 20 | mulgcld 13274 |
. . . . . 6
|
| 22 | 9, 16, 18, 21 | fvmptd3 5655 |
. . . . 5
|
| 23 | oveq1 5929 |
. . . . . . 7
| |
| 24 | simprl 529 |
. . . . . . 7
| |
| 25 | 4, 5, 19, 24, 20 | mulgcld 13274 |
. . . . . . 7
|
| 26 | 9, 23, 24, 25 | fvmptd3 5655 |
. . . . . 6
|
| 27 | oveq1 5929 |
. . . . . . 7
| |
| 28 | simprr 531 |
. . . . . . 7
| |
| 29 | 4, 5, 19, 28, 20 | mulgcld 13274 |
. . . . . . 7
|
| 30 | 9, 27, 28, 29 | fvmptd3 5655 |
. . . . . 6
|
| 31 | 26, 30 | oveq12d 5940 |
. . . . 5
|
| 32 | 15, 22, 31 | 3eqtr4d 2239 |
. . . 4
|
| 33 | 32 | ralrimivva 2579 |
. . 3
|
| 34 | 10, 33 | jca 306 |
. 2
|
| 35 | zringbas 14152 |
. . 3
| |
| 36 | zringplusg 14153 |
. . 3
| |
| 37 | 35, 4, 36, 11 | isghm 13373 |
. 2
|
| 38 | 3, 34, 37 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-rp 9729 df-fz 10084 df-seqfrec 10540 df-cj 11007 df-abs 11164 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-mulg 13250 df-subg 13300 df-ghm 13371 df-cmn 13416 df-mgp 13477 df-ur 13516 df-ring 13554 df-cring 13555 df-subrg 13775 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 |
| This theorem is referenced by: mulgrhm 14165 |
| Copyright terms: Public domain | W3C validator |