ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgghm2 Unicode version

Theorem mulgghm2 13923
Description: The powers of a group element give a homomorphism from 
ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgghm2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mulgghm2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Distinct variable groups:    B, n    R, n    .x. , n    .1. , n
Allowed substitution hint:    F( n)

Proof of Theorem mulgghm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  R  e.  Grp )
2 zringgrp 13911 . . 3  |-ring  e.  Grp
31, 2jctil 312 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
(ring 
e.  Grp  /\  R  e. 
Grp ) )
4 mulgghm2.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
64, 5mulgcl 13096 . . . . . 6  |-  ( ( R  e.  Grp  /\  n  e.  ZZ  /\  .1.  e.  B )  ->  (
n  .x.  .1.  )  e.  B )
763expa 1205 . . . . 5  |-  ( ( ( R  e.  Grp  /\  n  e.  ZZ )  /\  .1.  e.  B
)  ->  ( n  .x.  .1.  )  e.  B
)
87an32s 568 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  n  e.  ZZ )  ->  ( n  .x.  .1.  )  e.  B
)
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
108, 9fmptd 5691 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F : ZZ --> B )
11 eqid 2189 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
124, 5, 11mulgdir 13111 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  B ) )  ->  ( ( x  +  y )  .x.  .1.  )  =  (
( x  .x.  .1.  ) ( +g  `  R
) ( y  .x.  .1.  ) ) )
13123exp2 1227 . . . . . . 7  |-  ( R  e.  Grp  ->  (
x  e.  ZZ  ->  ( y  e.  ZZ  ->  (  .1.  e.  B  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) ) ) ) )
1413imp42 354 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  .1.  e.  B )  ->  (
( x  +  y )  .x.  .1.  )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
1514an32s 568 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) )
16 oveq1 5904 . . . . . 6  |-  ( n  =  ( x  +  y )  ->  (
n  .x.  .1.  )  =  ( ( x  +  y )  .x.  .1.  ) )
17 zaddcl 9324 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
1817adantl 277 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  +  y )  e.  ZZ )
19 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  R  e.  Grp )
20 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  .1.  e.  B )
214, 5, 19, 18, 20mulgcld 13101 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  e.  B )
229, 16, 18, 21fvmptd3 5630 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( x  +  y ) 
.x.  .1.  ) )
23 oveq1 5904 . . . . . . 7  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
24 simprl 529 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  ZZ )
254, 5, 19, 24, 20mulgcld 13101 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  .x.  .1.  )  e.  B )
269, 23, 24, 25fvmptd3 5630 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  x
)  =  ( x 
.x.  .1.  ) )
27 oveq1 5904 . . . . . . 7  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
28 simprr 531 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
y  e.  ZZ )
294, 5, 19, 28, 20mulgcld 13101 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( y  .x.  .1.  )  e.  B )
309, 27, 28, 29fvmptd3 5630 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  y
)  =  ( y 
.x.  .1.  ) )
3126, 30oveq12d 5915 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
3215, 22, 313eqtr4d 2232 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( F `  x ) ( +g  `  R
) ( F `  y ) ) )
3332ralrimivva 2572 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y ) )  =  ( ( F `
 x ) ( +g  `  R ) ( F `  y
) ) )
3410, 33jca 306 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( F : ZZ --> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) )
35 zringbas 13912 . . 3  |-  ZZ  =  ( Base ` ring )
36 zringplusg 13913 . . 3  |-  +  =  ( +g  ` ring )
3735, 4, 36, 11isghm 13199 . 2  |-  ( F  e.  (ring  GrpHom  R )  <->  ( (ring  e.  Grp  /\  R  e.  Grp )  /\  ( F : ZZ
--> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) ) )
383, 34, 37sylanbrc 417 1  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468    |-> cmpt 4079   -->wf 5231   ` cfv 5235  (class class class)co 5897    + caddc 7845   ZZcz 9284   Basecbs 12515   +g cplusg 12592   Grpcgrp 12960  .gcmg 13076    GrpHom cghm 13196  ℤringczring 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-addf 7964  ax-mulf 7965
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-tp 3615  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-9 9016  df-n0 9208  df-z 9285  df-dec 9416  df-uz 9560  df-fz 10041  df-seqfrec 10479  df-cj 10886  df-struct 12517  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-mulr 12606  df-starv 12607  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-mulg 13077  df-subg 13126  df-ghm 13197  df-cmn 13242  df-mgp 13292  df-ur 13331  df-ring 13369  df-cring 13370  df-subrg 13583  df-icnfld 13882  df-zring 13907
This theorem is referenced by:  mulgrhm  13924
  Copyright terms: Public domain W3C validator