ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgghm2 Unicode version

Theorem mulgghm2 14572
Description: The powers of a group element give a homomorphism from 
ZZ to a group. The name  .1. should not be taken as a constraint as it may be any group element. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Hypotheses
Ref Expression
mulgghm2.m  |-  .x.  =  (.g
`  R )
mulgghm2.f  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgghm2.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mulgghm2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Distinct variable groups:    B, n    R, n    .x. , n    .1. , n
Allowed substitution hint:    F( n)

Proof of Theorem mulgghm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  R  e.  Grp )
2 zringgrp 14559 . . 3  |-ring  e.  Grp
31, 2jctil 312 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
(ring 
e.  Grp  /\  R  e. 
Grp ) )
4 mulgghm2.b . . . . . . 7  |-  B  =  ( Base `  R
)
5 mulgghm2.m . . . . . . 7  |-  .x.  =  (.g
`  R )
64, 5mulgcl 13676 . . . . . 6  |-  ( ( R  e.  Grp  /\  n  e.  ZZ  /\  .1.  e.  B )  ->  (
n  .x.  .1.  )  e.  B )
763expa 1227 . . . . 5  |-  ( ( ( R  e.  Grp  /\  n  e.  ZZ )  /\  .1.  e.  B
)  ->  ( n  .x.  .1.  )  e.  B
)
87an32s 568 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  n  e.  ZZ )  ->  ( n  .x.  .1.  )  e.  B
)
9 mulgghm2.f . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
108, 9fmptd 5789 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F : ZZ --> B )
11 eqid 2229 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
124, 5, 11mulgdir 13691 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  B ) )  ->  ( ( x  +  y )  .x.  .1.  )  =  (
( x  .x.  .1.  ) ( +g  `  R
) ( y  .x.  .1.  ) ) )
13123exp2 1249 . . . . . . 7  |-  ( R  e.  Grp  ->  (
x  e.  ZZ  ->  ( y  e.  ZZ  ->  (  .1.  e.  B  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) ) ) ) )
1413imp42 354 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  .1.  e.  B )  ->  (
( x  +  y )  .x.  .1.  )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
1514an32s 568 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) )
16 oveq1 6008 . . . . . 6  |-  ( n  =  ( x  +  y )  ->  (
n  .x.  .1.  )  =  ( ( x  +  y )  .x.  .1.  ) )
17 zaddcl 9486 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
1817adantl 277 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  +  y )  e.  ZZ )
19 simpll 527 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  R  e.  Grp )
20 simplr 528 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  .1.  e.  B )
214, 5, 19, 18, 20mulgcld 13681 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  e.  B )
229, 16, 18, 21fvmptd3 5728 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( x  +  y ) 
.x.  .1.  ) )
23 oveq1 6008 . . . . . . 7  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
24 simprl 529 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  x  e.  ZZ )
254, 5, 19, 24, 20mulgcld 13681 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  .x.  .1.  )  e.  B )
269, 23, 24, 25fvmptd3 5728 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  x
)  =  ( x 
.x.  .1.  ) )
27 oveq1 6008 . . . . . . 7  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
28 simprr 531 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
y  e.  ZZ )
294, 5, 19, 28, 20mulgcld 13681 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( y  .x.  .1.  )  e.  B )
309, 27, 28, 29fvmptd3 5728 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  y
)  =  ( y 
.x.  .1.  ) )
3126, 30oveq12d 6019 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
3215, 22, 313eqtr4d 2272 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( F `  x ) ( +g  `  R
) ( F `  y ) ) )
3332ralrimivva 2612 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y ) )  =  ( ( F `
 x ) ( +g  `  R ) ( F `  y
) ) )
3410, 33jca 306 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( F : ZZ --> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) )
35 zringbas 14560 . . 3  |-  ZZ  =  ( Base ` ring )
36 zringplusg 14561 . . 3  |-  +  =  ( +g  ` ring )
3735, 4, 36, 11isghm 13780 . 2  |-  ( F  e.  (ring  GrpHom  R )  <->  ( (ring  e.  Grp  /\  R  e.  Grp )  /\  ( F : ZZ
--> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) ) )
383, 34, 37sylanbrc 417 1  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  (ring  GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6001    + caddc 8002   ZZcz 9446   Basecbs 13032   +g cplusg 13110   Grpcgrp 13533  .gcmg 13656    GrpHom cghm 13777  ℤringczring 14554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-rp 9850  df-fz 10205  df-seqfrec 10670  df-cj 11353  df-abs 11510  df-struct 13034  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-starv 13125  df-tset 13129  df-ple 13130  df-ds 13132  df-unif 13133  df-0g 13291  df-topgen 13293  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-mulg 13657  df-subg 13707  df-ghm 13778  df-cmn 13823  df-mgp 13884  df-ur 13923  df-ring 13961  df-cring 13962  df-subrg 14183  df-bl 14510  df-mopn 14511  df-fg 14513  df-metu 14514  df-cnfld 14521  df-zring 14555
This theorem is referenced by:  mulgrhm  14573
  Copyright terms: Public domain W3C validator