ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islssmd Unicode version

Theorem islssmd 13991
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f  |-  ( ph  ->  F  =  (Scalar `  W ) )
islssd.b  |-  ( ph  ->  B  =  ( Base `  F ) )
islssd.v  |-  ( ph  ->  V  =  ( Base `  W ) )
islssd.p  |-  ( ph  ->  .+  =  ( +g  `  W ) )
islssd.t  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
islssd.s  |-  ( ph  ->  S  =  ( LSubSp `  W ) )
islssd.u  |-  ( ph  ->  U  C_  V )
islssmd.m  |-  ( ph  ->  E. j  j  e.  U )
islssd.c  |-  ( (
ph  /\  ( x  e.  B  /\  a  e.  U  /\  b  e.  U ) )  -> 
( ( x  .x.  a )  .+  b
)  e.  U )
islssmd.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
islssmd  |-  ( ph  ->  U  e.  S )
Distinct variable groups:    a, b, x,
ph    U, a, b, x    W, a, b, x    B, a, b    U, j, a, b, x
Allowed substitution hints:    ph( j)    B( x, j)    .+ ( x, j, a, b)    S( x, j, a, b)    .x. ( x, j, a, b)    F( x, j, a, b)    V( x, j, a, b)    W( j)    X( x, j, a, b)

Proof of Theorem islssmd
StepHypRef Expression
1 islssd.u . . . 4  |-  ( ph  ->  U  C_  V )
2 islssd.v . . . 4  |-  ( ph  ->  V  =  ( Base `  W ) )
31, 2sseqtrd 3222 . . 3  |-  ( ph  ->  U  C_  ( Base `  W ) )
4 islssmd.m . . 3  |-  ( ph  ->  E. j  j  e.  U )
5 islssd.c . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  a  e.  U  /\  b  e.  U ) )  -> 
( ( x  .x.  a )  .+  b
)  e.  U )
653exp2 1227 . . . . . . . 8  |-  ( ph  ->  ( x  e.  B  ->  ( a  e.  U  ->  ( b  e.  U  ->  ( ( x  .x.  a )  .+  b
)  e.  U ) ) ) )
76imp43 355 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
a  e.  U  /\  b  e.  U )
)  ->  ( (
x  .x.  a )  .+  b )  e.  U
)
87ralrimivva 2579 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
98ex 115 . . . . 5  |-  ( ph  ->  ( x  e.  B  ->  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U ) )
10 islssd.b . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  F ) )
11 islssd.f . . . . . . . 8  |-  ( ph  ->  F  =  (Scalar `  W ) )
1211fveq2d 5565 . . . . . . 7  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  W )
) )
1310, 12eqtrd 2229 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  (Scalar `  W )
) )
1413eleq2d 2266 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  (Scalar `  W ) ) ) )
15 islssd.p . . . . . . . . 9  |-  ( ph  ->  .+  =  ( +g  `  W ) )
1615oveqd 5942 . . . . . . . 8  |-  ( ph  ->  ( ( x  .x.  a )  .+  b
)  =  ( ( x  .x.  a ) ( +g  `  W
) b ) )
17 islssd.t . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
1817oveqd 5942 . . . . . . . . 9  |-  ( ph  ->  ( x  .x.  a
)  =  ( x ( .s `  W
) a ) )
1918oveq1d 5940 . . . . . . . 8  |-  ( ph  ->  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) b ) )
2016, 19eqtrd 2229 . . . . . . 7  |-  ( ph  ->  ( ( x  .x.  a )  .+  b
)  =  ( ( x ( .s `  W ) a ) ( +g  `  W
) b ) )
2120eleq1d 2265 . . . . . 6  |-  ( ph  ->  ( ( ( x 
.x.  a )  .+  b )  e.  U  <->  ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
22212ralbidv 2521 . . . . 5  |-  ( ph  ->  ( A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  <->  A. a  e.  U  A. b  e.  U  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
239, 14, 223imtr3d 202 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  (Scalar `  W
) )  ->  A. a  e.  U  A. b  e.  U  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  U ) )
2423ralrimiv 2569 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  (Scalar `  W
) ) A. a  e.  U  A. b  e.  U  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  U )
25 islssmd.w . . . 4  |-  ( ph  ->  W  e.  X )
26 eqid 2196 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
27 eqid 2196 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
28 eqid 2196 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
29 eqid 2196 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
30 eqid 2196 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
31 eqid 2196 . . . . 5  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
3226, 27, 28, 29, 30, 31islssmg 13990 . . . 4  |-  ( W  e.  X  ->  ( U  e.  ( LSubSp `  W )  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
3325, 32syl 14 . . 3  |-  ( ph  ->  ( U  e.  (
LSubSp `  W )  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
343, 4, 24, 33mpbir3and 1182 . 2  |-  ( ph  ->  U  e.  ( LSubSp `  W ) )
35 islssd.s . 2  |-  ( ph  ->  S  =  ( LSubSp `  W ) )
3634, 35eleqtrrd 2276 1  |-  ( ph  ->  U  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475    C_ wss 3157   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780  Scalarcsca 12783   .scvsca 12784   LSubSpclss 13984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-lssm 13985
This theorem is referenced by:  lss1  13994  lsssn0  14002  islss3  14011  lss1d  14015  lssintclm  14016
  Copyright terms: Public domain W3C validator