| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > islssmd | Unicode version | ||
| Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| islssd.f |
|
| islssd.b |
|
| islssd.v |
|
| islssd.p |
|
| islssd.t |
|
| islssd.s |
|
| islssd.u |
|
| islssmd.m |
|
| islssd.c |
|
| islssmd.w |
|
| Ref | Expression |
|---|---|
| islssmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssd.u |
. . . 4
| |
| 2 | islssd.v |
. . . 4
| |
| 3 | 1, 2 | sseqtrd 3262 |
. . 3
|
| 4 | islssmd.m |
. . 3
| |
| 5 | islssd.c |
. . . . . . . . 9
| |
| 6 | 5 | 3exp2 1249 |
. . . . . . . 8
|
| 7 | 6 | imp43 355 |
. . . . . . 7
|
| 8 | 7 | ralrimivva 2612 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | islssd.b |
. . . . . . 7
| |
| 11 | islssd.f |
. . . . . . . 8
| |
| 12 | 11 | fveq2d 5630 |
. . . . . . 7
|
| 13 | 10, 12 | eqtrd 2262 |
. . . . . 6
|
| 14 | 13 | eleq2d 2299 |
. . . . 5
|
| 15 | islssd.p |
. . . . . . . . 9
| |
| 16 | 15 | oveqd 6017 |
. . . . . . . 8
|
| 17 | islssd.t |
. . . . . . . . . 10
| |
| 18 | 17 | oveqd 6017 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 6015 |
. . . . . . . 8
|
| 20 | 16, 19 | eqtrd 2262 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2298 |
. . . . . 6
|
| 22 | 21 | 2ralbidv 2554 |
. . . . 5
|
| 23 | 9, 14, 22 | 3imtr3d 202 |
. . . 4
|
| 24 | 23 | ralrimiv 2602 |
. . 3
|
| 25 | islssmd.w |
. . . 4
| |
| 26 | eqid 2229 |
. . . . 5
| |
| 27 | eqid 2229 |
. . . . 5
| |
| 28 | eqid 2229 |
. . . . 5
| |
| 29 | eqid 2229 |
. . . . 5
| |
| 30 | eqid 2229 |
. . . . 5
| |
| 31 | eqid 2229 |
. . . . 5
| |
| 32 | 26, 27, 28, 29, 30, 31 | islssmg 14316 |
. . . 4
|
| 33 | 25, 32 | syl 14 |
. . 3
|
| 34 | 3, 4, 24, 33 | mpbir3and 1204 |
. 2
|
| 35 | islssd.s |
. 2
| |
| 36 | 34, 35 | eleqtrrd 2309 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-inn 9107 df-ndx 13030 df-slot 13031 df-base 13033 df-lssm 14311 |
| This theorem is referenced by: lss1 14320 lsssn0 14328 islss3 14337 lss1d 14341 lssintclm 14342 |
| Copyright terms: Public domain | W3C validator |