ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islssmd Unicode version

Theorem islssmd 14236
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f  |-  ( ph  ->  F  =  (Scalar `  W ) )
islssd.b  |-  ( ph  ->  B  =  ( Base `  F ) )
islssd.v  |-  ( ph  ->  V  =  ( Base `  W ) )
islssd.p  |-  ( ph  ->  .+  =  ( +g  `  W ) )
islssd.t  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
islssd.s  |-  ( ph  ->  S  =  ( LSubSp `  W ) )
islssd.u  |-  ( ph  ->  U  C_  V )
islssmd.m  |-  ( ph  ->  E. j  j  e.  U )
islssd.c  |-  ( (
ph  /\  ( x  e.  B  /\  a  e.  U  /\  b  e.  U ) )  -> 
( ( x  .x.  a )  .+  b
)  e.  U )
islssmd.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
islssmd  |-  ( ph  ->  U  e.  S )
Distinct variable groups:    a, b, x,
ph    U, a, b, x    W, a, b, x    B, a, b    U, j, a, b, x
Allowed substitution hints:    ph( j)    B( x, j)    .+ ( x, j, a, b)    S( x, j, a, b)    .x. ( x, j, a, b)    F( x, j, a, b)    V( x, j, a, b)    W( j)    X( x, j, a, b)

Proof of Theorem islssmd
StepHypRef Expression
1 islssd.u . . . 4  |-  ( ph  ->  U  C_  V )
2 islssd.v . . . 4  |-  ( ph  ->  V  =  ( Base `  W ) )
31, 2sseqtrd 3239 . . 3  |-  ( ph  ->  U  C_  ( Base `  W ) )
4 islssmd.m . . 3  |-  ( ph  ->  E. j  j  e.  U )
5 islssd.c . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  a  e.  U  /\  b  e.  U ) )  -> 
( ( x  .x.  a )  .+  b
)  e.  U )
653exp2 1228 . . . . . . . 8  |-  ( ph  ->  ( x  e.  B  ->  ( a  e.  U  ->  ( b  e.  U  ->  ( ( x  .x.  a )  .+  b
)  e.  U ) ) ) )
76imp43 355 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
a  e.  U  /\  b  e.  U )
)  ->  ( (
x  .x.  a )  .+  b )  e.  U
)
87ralrimivva 2590 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
98ex 115 . . . . 5  |-  ( ph  ->  ( x  e.  B  ->  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U ) )
10 islssd.b . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  F ) )
11 islssd.f . . . . . . . 8  |-  ( ph  ->  F  =  (Scalar `  W ) )
1211fveq2d 5603 . . . . . . 7  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  W )
) )
1310, 12eqtrd 2240 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  (Scalar `  W )
) )
1413eleq2d 2277 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  (Scalar `  W ) ) ) )
15 islssd.p . . . . . . . . 9  |-  ( ph  ->  .+  =  ( +g  `  W ) )
1615oveqd 5984 . . . . . . . 8  |-  ( ph  ->  ( ( x  .x.  a )  .+  b
)  =  ( ( x  .x.  a ) ( +g  `  W
) b ) )
17 islssd.t . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
1817oveqd 5984 . . . . . . . . 9  |-  ( ph  ->  ( x  .x.  a
)  =  ( x ( .s `  W
) a ) )
1918oveq1d 5982 . . . . . . . 8  |-  ( ph  ->  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) b ) )
2016, 19eqtrd 2240 . . . . . . 7  |-  ( ph  ->  ( ( x  .x.  a )  .+  b
)  =  ( ( x ( .s `  W ) a ) ( +g  `  W
) b ) )
2120eleq1d 2276 . . . . . 6  |-  ( ph  ->  ( ( ( x 
.x.  a )  .+  b )  e.  U  <->  ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
22212ralbidv 2532 . . . . 5  |-  ( ph  ->  ( A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  <->  A. a  e.  U  A. b  e.  U  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
239, 14, 223imtr3d 202 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  (Scalar `  W
) )  ->  A. a  e.  U  A. b  e.  U  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  U ) )
2423ralrimiv 2580 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  (Scalar `  W
) ) A. a  e.  U  A. b  e.  U  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  U )
25 islssmd.w . . . 4  |-  ( ph  ->  W  e.  X )
26 eqid 2207 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
27 eqid 2207 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
28 eqid 2207 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
29 eqid 2207 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
30 eqid 2207 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
31 eqid 2207 . . . . 5  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
3226, 27, 28, 29, 30, 31islssmg 14235 . . . 4  |-  ( W  e.  X  ->  ( U  e.  ( LSubSp `  W )  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
3325, 32syl 14 . . 3  |-  ( ph  ->  ( U  e.  (
LSubSp `  W )  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
343, 4, 24, 33mpbir3and 1183 . 2  |-  ( ph  ->  U  e.  ( LSubSp `  W ) )
35 islssd.s . 2  |-  ( ph  ->  S  =  ( LSubSp `  W ) )
3634, 35eleqtrrd 2287 1  |-  ( ph  ->  U  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486    C_ wss 3174   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024  Scalarcsca 13027   .scvsca 13028   LSubSpclss 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-lssm 14230
This theorem is referenced by:  lss1  14239  lsssn0  14247  islss3  14256  lss1d  14260  lssintclm  14261
  Copyright terms: Public domain W3C validator