| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > islssmd | Unicode version | ||
| Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| islssd.f |
|
| islssd.b |
|
| islssd.v |
|
| islssd.p |
|
| islssd.t |
|
| islssd.s |
|
| islssd.u |
|
| islssmd.m |
|
| islssd.c |
|
| islssmd.w |
|
| Ref | Expression |
|---|---|
| islssmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssd.u |
. . . 4
| |
| 2 | islssd.v |
. . . 4
| |
| 3 | 1, 2 | sseqtrd 3239 |
. . 3
|
| 4 | islssmd.m |
. . 3
| |
| 5 | islssd.c |
. . . . . . . . 9
| |
| 6 | 5 | 3exp2 1228 |
. . . . . . . 8
|
| 7 | 6 | imp43 355 |
. . . . . . 7
|
| 8 | 7 | ralrimivva 2590 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | islssd.b |
. . . . . . 7
| |
| 11 | islssd.f |
. . . . . . . 8
| |
| 12 | 11 | fveq2d 5603 |
. . . . . . 7
|
| 13 | 10, 12 | eqtrd 2240 |
. . . . . 6
|
| 14 | 13 | eleq2d 2277 |
. . . . 5
|
| 15 | islssd.p |
. . . . . . . . 9
| |
| 16 | 15 | oveqd 5984 |
. . . . . . . 8
|
| 17 | islssd.t |
. . . . . . . . . 10
| |
| 18 | 17 | oveqd 5984 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 5982 |
. . . . . . . 8
|
| 20 | 16, 19 | eqtrd 2240 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2276 |
. . . . . 6
|
| 22 | 21 | 2ralbidv 2532 |
. . . . 5
|
| 23 | 9, 14, 22 | 3imtr3d 202 |
. . . 4
|
| 24 | 23 | ralrimiv 2580 |
. . 3
|
| 25 | islssmd.w |
. . . 4
| |
| 26 | eqid 2207 |
. . . . 5
| |
| 27 | eqid 2207 |
. . . . 5
| |
| 28 | eqid 2207 |
. . . . 5
| |
| 29 | eqid 2207 |
. . . . 5
| |
| 30 | eqid 2207 |
. . . . 5
| |
| 31 | eqid 2207 |
. . . . 5
| |
| 32 | 26, 27, 28, 29, 30, 31 | islssmg 14235 |
. . . 4
|
| 33 | 25, 32 | syl 14 |
. . 3
|
| 34 | 3, 4, 24, 33 | mpbir3and 1183 |
. 2
|
| 35 | islssd.s |
. 2
| |
| 36 | 34, 35 | eleqtrrd 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-lssm 14230 |
| This theorem is referenced by: lss1 14239 lsssn0 14247 islss3 14256 lss1d 14260 lssintclm 14261 |
| Copyright terms: Public domain | W3C validator |