| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > islssmd | Unicode version | ||
| Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| islssd.f |
|
| islssd.b |
|
| islssd.v |
|
| islssd.p |
|
| islssd.t |
|
| islssd.s |
|
| islssd.u |
|
| islssmd.m |
|
| islssd.c |
|
| islssmd.w |
|
| Ref | Expression |
|---|---|
| islssmd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islssd.u |
. . . 4
| |
| 2 | islssd.v |
. . . 4
| |
| 3 | 1, 2 | sseqtrd 3230 |
. . 3
|
| 4 | islssmd.m |
. . 3
| |
| 5 | islssd.c |
. . . . . . . . 9
| |
| 6 | 5 | 3exp2 1227 |
. . . . . . . 8
|
| 7 | 6 | imp43 355 |
. . . . . . 7
|
| 8 | 7 | ralrimivva 2587 |
. . . . . 6
|
| 9 | 8 | ex 115 |
. . . . 5
|
| 10 | islssd.b |
. . . . . . 7
| |
| 11 | islssd.f |
. . . . . . . 8
| |
| 12 | 11 | fveq2d 5579 |
. . . . . . 7
|
| 13 | 10, 12 | eqtrd 2237 |
. . . . . 6
|
| 14 | 13 | eleq2d 2274 |
. . . . 5
|
| 15 | islssd.p |
. . . . . . . . 9
| |
| 16 | 15 | oveqd 5960 |
. . . . . . . 8
|
| 17 | islssd.t |
. . . . . . . . . 10
| |
| 18 | 17 | oveqd 5960 |
. . . . . . . . 9
|
| 19 | 18 | oveq1d 5958 |
. . . . . . . 8
|
| 20 | 16, 19 | eqtrd 2237 |
. . . . . . 7
|
| 21 | 20 | eleq1d 2273 |
. . . . . 6
|
| 22 | 21 | 2ralbidv 2529 |
. . . . 5
|
| 23 | 9, 14, 22 | 3imtr3d 202 |
. . . 4
|
| 24 | 23 | ralrimiv 2577 |
. . 3
|
| 25 | islssmd.w |
. . . 4
| |
| 26 | eqid 2204 |
. . . . 5
| |
| 27 | eqid 2204 |
. . . . 5
| |
| 28 | eqid 2204 |
. . . . 5
| |
| 29 | eqid 2204 |
. . . . 5
| |
| 30 | eqid 2204 |
. . . . 5
| |
| 31 | eqid 2204 |
. . . . 5
| |
| 32 | 26, 27, 28, 29, 30, 31 | islssmg 14062 |
. . . 4
|
| 33 | 25, 32 | syl 14 |
. . 3
|
| 34 | 3, 4, 24, 33 | mpbir3and 1182 |
. 2
|
| 35 | islssd.s |
. 2
| |
| 36 | 34, 35 | eleqtrrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-inn 9036 df-ndx 12777 df-slot 12778 df-base 12780 df-lssm 14057 |
| This theorem is referenced by: lss1 14066 lsssn0 14074 islss3 14083 lss1d 14087 lssintclm 14088 |
| Copyright terms: Public domain | W3C validator |