ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islssmd Unicode version

Theorem islssmd 13858
Description: Properties that determine a subspace of a left module or left vector space. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
islssd.f  |-  ( ph  ->  F  =  (Scalar `  W ) )
islssd.b  |-  ( ph  ->  B  =  ( Base `  F ) )
islssd.v  |-  ( ph  ->  V  =  ( Base `  W ) )
islssd.p  |-  ( ph  ->  .+  =  ( +g  `  W ) )
islssd.t  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
islssd.s  |-  ( ph  ->  S  =  ( LSubSp `  W ) )
islssd.u  |-  ( ph  ->  U  C_  V )
islssmd.m  |-  ( ph  ->  E. j  j  e.  U )
islssd.c  |-  ( (
ph  /\  ( x  e.  B  /\  a  e.  U  /\  b  e.  U ) )  -> 
( ( x  .x.  a )  .+  b
)  e.  U )
islssmd.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
islssmd  |-  ( ph  ->  U  e.  S )
Distinct variable groups:    a, b, x,
ph    U, a, b, x    W, a, b, x    B, a, b    U, j, a, b, x
Allowed substitution hints:    ph( j)    B( x, j)    .+ ( x, j, a, b)    S( x, j, a, b)    .x. ( x, j, a, b)    F( x, j, a, b)    V( x, j, a, b)    W( j)    X( x, j, a, b)

Proof of Theorem islssmd
StepHypRef Expression
1 islssd.u . . . 4  |-  ( ph  ->  U  C_  V )
2 islssd.v . . . 4  |-  ( ph  ->  V  =  ( Base `  W ) )
31, 2sseqtrd 3218 . . 3  |-  ( ph  ->  U  C_  ( Base `  W ) )
4 islssmd.m . . 3  |-  ( ph  ->  E. j  j  e.  U )
5 islssd.c . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  a  e.  U  /\  b  e.  U ) )  -> 
( ( x  .x.  a )  .+  b
)  e.  U )
653exp2 1227 . . . . . . . 8  |-  ( ph  ->  ( x  e.  B  ->  ( a  e.  U  ->  ( b  e.  U  ->  ( ( x  .x.  a )  .+  b
)  e.  U ) ) ) )
76imp43 355 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  (
a  e.  U  /\  b  e.  U )
)  ->  ( (
x  .x.  a )  .+  b )  e.  U
)
87ralrimivva 2576 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  A. a  e.  U  A. b  e.  U  ( (
x  .x.  a )  .+  b )  e.  U
)
98ex 115 . . . . 5  |-  ( ph  ->  ( x  e.  B  ->  A. a  e.  U  A. b  e.  U  ( ( x  .x.  a )  .+  b
)  e.  U ) )
10 islssd.b . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  F ) )
11 islssd.f . . . . . . . 8  |-  ( ph  ->  F  =  (Scalar `  W ) )
1211fveq2d 5559 . . . . . . 7  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (Scalar `  W )
) )
1310, 12eqtrd 2226 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  (Scalar `  W )
) )
1413eleq2d 2263 . . . . 5  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  (Scalar `  W ) ) ) )
15 islssd.p . . . . . . . . 9  |-  ( ph  ->  .+  =  ( +g  `  W ) )
1615oveqd 5936 . . . . . . . 8  |-  ( ph  ->  ( ( x  .x.  a )  .+  b
)  =  ( ( x  .x.  a ) ( +g  `  W
) b ) )
17 islssd.t . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .s
`  W ) )
1817oveqd 5936 . . . . . . . . 9  |-  ( ph  ->  ( x  .x.  a
)  =  ( x ( .s `  W
) a ) )
1918oveq1d 5934 . . . . . . . 8  |-  ( ph  ->  ( ( x  .x.  a ) ( +g  `  W ) b )  =  ( ( x ( .s `  W
) a ) ( +g  `  W ) b ) )
2016, 19eqtrd 2226 . . . . . . 7  |-  ( ph  ->  ( ( x  .x.  a )  .+  b
)  =  ( ( x ( .s `  W ) a ) ( +g  `  W
) b ) )
2120eleq1d 2262 . . . . . 6  |-  ( ph  ->  ( ( ( x 
.x.  a )  .+  b )  e.  U  <->  ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
22212ralbidv 2518 . . . . 5  |-  ( ph  ->  ( A. a  e.  U  A. b  e.  U  ( ( x 
.x.  a )  .+  b )  e.  U  <->  A. a  e.  U  A. b  e.  U  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e.  U ) )
239, 14, 223imtr3d 202 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  (Scalar `  W
) )  ->  A. a  e.  U  A. b  e.  U  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  U ) )
2423ralrimiv 2566 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  (Scalar `  W
) ) A. a  e.  U  A. b  e.  U  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e.  U )
25 islssmd.w . . . 4  |-  ( ph  ->  W  e.  X )
26 eqid 2193 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
27 eqid 2193 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
28 eqid 2193 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
29 eqid 2193 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
30 eqid 2193 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
31 eqid 2193 . . . . 5  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
3226, 27, 28, 29, 30, 31islssmg 13857 . . . 4  |-  ( W  e.  X  ->  ( U  e.  ( LSubSp `  W )  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
3325, 32syl 14 . . 3  |-  ( ph  ->  ( U  e.  (
LSubSp `  W )  <->  ( U  C_  ( Base `  W
)  /\  E. j 
j  e.  U  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. a  e.  U  A. b  e.  U  ( ( x ( .s `  W
) a ) ( +g  `  W ) b )  e.  U
) ) )
343, 4, 24, 33mpbir3and 1182 . 2  |-  ( ph  ->  U  e.  ( LSubSp `  W ) )
35 islssd.s . 2  |-  ( ph  ->  S  =  ( LSubSp `  W ) )
3634, 35eleqtrrd 2273 1  |-  ( ph  ->  U  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3154   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698  Scalarcsca 12701   .scvsca 12702   LSubSpclss 13851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-lssm 13852
This theorem is referenced by:  lss1  13861  lsssn0  13869  islss3  13878  lss1d  13882  lssintclm  13883
  Copyright terms: Public domain W3C validator