ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfund Unicode version

Theorem fliftfund 5776
Description: The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
fliftfun.4  |-  ( x  =  y  ->  A  =  C )
fliftfun.5  |-  ( x  =  y  ->  B  =  D )
fliftfund.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )
Assertion
Ref Expression
fliftfund  |-  ( ph  ->  Fun  F )
Distinct variable groups:    y, A    y, B    x, C    x, y, R    x, D    y, F    ph, x, y    x, X, y    x, S, y
Allowed substitution hints:    A( x)    B( x)    C( y)    D( y)    F( x)

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )
213exp2 1220 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( y  e.  X  ->  ( A  =  C  ->  B  =  D ) ) ) )
32imp32 255 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A  =  C  ->  B  =  D ) )
43ralrimivva 2552 . 2  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) )
5 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
6 flift.2 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
7 flift.3 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
8 fliftfun.4 . . 3  |-  ( x  =  y  ->  A  =  C )
9 fliftfun.5 . . 3  |-  ( x  =  y  ->  B  =  D )
105, 6, 7, 8, 9fliftfun 5775 . 2  |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) ) )
114, 10mpbird 166 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   <.cop 3586    |-> cmpt 4050   ran crn 4612   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator