ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfund Unicode version

Theorem fliftfund 5706
Description: The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
fliftfun.4  |-  ( x  =  y  ->  A  =  C )
fliftfun.5  |-  ( x  =  y  ->  B  =  D )
fliftfund.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )
Assertion
Ref Expression
fliftfund  |-  ( ph  ->  Fun  F )
Distinct variable groups:    y, A    y, B    x, C    x, y, R    x, D    y, F    ph, x, y    x, X, y    x, S, y
Allowed substitution hints:    A( x)    B( x)    C( y)    D( y)    F( x)

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )
213exp2 1204 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( y  e.  X  ->  ( A  =  C  ->  B  =  D ) ) ) )
32imp32 255 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A  =  C  ->  B  =  D ) )
43ralrimivva 2517 . 2  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) )
5 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
6 flift.2 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
7 flift.3 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
8 fliftfun.4 . . 3  |-  ( x  =  y  ->  A  =  C )
9 fliftfun.5 . . 3  |-  ( x  =  y  ->  B  =  D )
105, 6, 7, 8, 9fliftfun 5705 . 2  |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) ) )
114, 10mpbird 166 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   <.cop 3535    |-> cmpt 3997   ran crn 4548   Fun wfun 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator