ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfund Unicode version

Theorem fliftfund 5921
Description: The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
fliftfun.4  |-  ( x  =  y  ->  A  =  C )
fliftfun.5  |-  ( x  =  y  ->  B  =  D )
fliftfund.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )
Assertion
Ref Expression
fliftfund  |-  ( ph  ->  Fun  F )
Distinct variable groups:    y, A    y, B    x, C    x, y, R    x, D    y, F    ph, x, y    x, X, y    x, S, y
Allowed substitution hints:    A( x)    B( x)    C( y)    D( y)    F( x)

Proof of Theorem fliftfund
StepHypRef Expression
1 fliftfund.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  A  =  C ) )  ->  B  =  D )
213exp2 1249 . . . 4  |-  ( ph  ->  ( x  e.  X  ->  ( y  e.  X  ->  ( A  =  C  ->  B  =  D ) ) ) )
32imp32 257 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( A  =  C  ->  B  =  D ) )
43ralrimivva 2612 . 2  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) )
5 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
6 flift.2 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
7 flift.3 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
8 fliftfun.4 . . 3  |-  ( x  =  y  ->  A  =  C )
9 fliftfun.5 . . 3  |-  ( x  =  y  ->  B  =  D )
105, 6, 7, 8, 9fliftfun 5920 . 2  |-  ( ph  ->  ( Fun  F  <->  A. x  e.  X  A. y  e.  X  ( A  =  C  ->  B  =  D ) ) )
114, 10mpbird 167 1  |-  ( ph  ->  Fun  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   <.cop 3669    |-> cmpt 4145   ran crn 4720   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator