ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isxmetd Unicode version

Theorem isxmetd 14819
Description: Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
isxmetd.0  |-  ( ph  ->  X  e.  _V )
isxmetd.1  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
isxmetd.2  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
isxmetd.3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
Assertion
Ref Expression
isxmetd  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Distinct variable groups:    x, y, z, D    ph, x, y, z   
x, X, y, z

Proof of Theorem isxmetd
StepHypRef Expression
1 isxmetd.1 . 2  |-  ( ph  ->  D : ( X  X.  X ) --> RR* )
2 isxmetd.2 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( x D y )  =  0  <-> 
x  =  y ) )
3 isxmetd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
433exp2 1228 . . . . . 6  |-  ( ph  ->  ( x  e.  X  ->  ( y  e.  X  ->  ( z  e.  X  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) ) ) )
54imp32 257 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( z  e.  X  ->  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) ) )
65ralrimiv 2578 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  A. z  e.  X  ( x D y )  <_  ( (
z D x ) +e ( z D y ) ) )
72, 6jca 306 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) )
87ralrimivva 2588 . 2  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) ) )
9 isxmetd.0 . . 3  |-  ( ph  ->  X  e.  _V )
10 isxmet 14817 . . 3  |-  ( X  e.  _V  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
119, 10syl 14 . 2  |-  ( ph  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
121, 8, 11mpbir2and 947 1  |-  ( ph  ->  D  e.  ( *Met `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   class class class wbr 4044    X. cxp 4673   -->wf 5267   ` cfv 5271  (class class class)co 5944   0cc0 7925   RR*cxr 8106    <_ cle 8108   +ecxad 9892   *Metcxmet 14298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-xr 8111  df-xmet 14306
This theorem is referenced by:  isxmet2d  14820  xmetres2  14851  comet  14971  xmetxp  14979
  Copyright terms: Public domain W3C validator