ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpasscan1 Unicode version

Theorem grpasscan1 13510
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
grpasscan1.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpasscan1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  X
)  .+  Y )
)  =  Y )

Proof of Theorem grpasscan1
StepHypRef Expression
1 grplcan.b . . . . 5  |-  B  =  ( Base `  G
)
2 grplcan.p . . . . 5  |-  .+  =  ( +g  `  G )
3 eqid 2207 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 grpasscan1.n . . . . 5  |-  N  =  ( invg `  G )
51, 2, 3, 4grprinv 13498 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
653adant3 1020 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
76oveq1d 5982 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( ( 0g
`  G )  .+  Y ) )
81, 4grpinvcl 13495 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
91, 2grpass 13456 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( N `  X
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X ) 
.+  Y ) ) )
1093exp2 1228 . . . . 5  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( ( N `  X
)  e.  B  -> 
( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) ) ) )
1110imp 124 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  e.  B  ->  ( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) ) )
128, 11mpd 13 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) )
13123impia 1203 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) )
141, 2, 3grplid 13478 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
15143adant2 1019 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
167, 13, 153eqtr3d 2248 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  X
)  .+  Y )
)  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447   invgcminusg 13448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451
This theorem is referenced by:  mulgaddcomlem  13596
  Copyright terms: Public domain W3C validator