ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpasscan1 Unicode version

Theorem grpasscan1 12940
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
grpasscan1.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpasscan1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  X
)  .+  Y )
)  =  Y )

Proof of Theorem grpasscan1
StepHypRef Expression
1 grplcan.b . . . . 5  |-  B  =  ( Base `  G
)
2 grplcan.p . . . . 5  |-  .+  =  ( +g  `  G )
3 eqid 2177 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 grpasscan1.n . . . . 5  |-  N  =  ( invg `  G )
51, 2, 3, 4grprinv 12930 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
653adant3 1017 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
76oveq1d 5893 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( ( 0g
`  G )  .+  Y ) )
81, 4grpinvcl 12928 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
91, 2grpass 12893 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( N `  X
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X ) 
.+  Y ) ) )
1093exp2 1225 . . . . 5  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( ( N `  X
)  e.  B  -> 
( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) ) ) )
1110imp 124 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  e.  B  ->  ( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) ) )
128, 11mpd 13 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) )
13123impia 1200 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) )
141, 2, 3grplid 12913 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
15143adant2 1016 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
167, 13, 153eqtr3d 2218 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  X
)  .+  Y )
)  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5878   Basecbs 12465   +g cplusg 12539   0gc0g 12711   Grpcgrp 12884   invgcminusg 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5834  df-ov 5881  df-inn 8923  df-2 8981  df-ndx 12468  df-slot 12469  df-base 12471  df-plusg 12552  df-0g 12713  df-mgm 12782  df-sgrp 12815  df-mnd 12825  df-grp 12887  df-minusg 12888
This theorem is referenced by:  mulgaddcomlem  13016
  Copyright terms: Public domain W3C validator