ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpasscan1 Unicode version

Theorem grpasscan1 13395
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
grpasscan1.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpasscan1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  X
)  .+  Y )
)  =  Y )

Proof of Theorem grpasscan1
StepHypRef Expression
1 grplcan.b . . . . 5  |-  B  =  ( Base `  G
)
2 grplcan.p . . . . 5  |-  .+  =  ( +g  `  G )
3 eqid 2205 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
4 grpasscan1.n . . . . 5  |-  N  =  ( invg `  G )
51, 2, 3, 4grprinv 13383 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
653adant3 1020 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( N `  X )
)  =  ( 0g
`  G ) )
76oveq1d 5959 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( ( 0g
`  G )  .+  Y ) )
81, 4grpinvcl 13380 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( N `  X
)  e.  B )
91, 2grpass 13341 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( N `  X
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X ) 
.+  Y ) ) )
1093exp2 1228 . . . . 5  |-  ( G  e.  Grp  ->  ( X  e.  B  ->  ( ( N `  X
)  e.  B  -> 
( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) ) ) )
1110imp 124 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ( N `  X )  e.  B  ->  ( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) ) )
128, 11mpd 13 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( Y  e.  B  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) ) )
13123impia 1203 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  X ) )  .+  Y )  =  ( X  .+  ( ( N `  X )  .+  Y
) ) )
141, 2, 3grplid 13363 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
15143adant2 1019 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( 0g `  G )  .+  Y
)  =  Y )
167, 13, 153eqtr3d 2246 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  X
)  .+  Y )
)  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336
This theorem is referenced by:  mulgaddcomlem  13481
  Copyright terms: Public domain W3C validator