ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibxssdm Unicode version

Theorem tfrlemibxssdm 6192
Description: The union of  B is defined on all ordinals. Lemma for tfrlemi1 6197. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemibxssdm  |-  ( ph  ->  x  C_  dom  U. B
)
Distinct variable groups:    f, g, h, w, x, y, z, A    f, F, g, h, w, x, y, z    ph, w, y    w, B, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, f)    B( x, y)

Proof of Theorem tfrlemibxssdm
StepHypRef Expression
1 tfrlemi1.5 . . 3  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
2 tfrlemi1.4 . . . 4  |-  ( ph  ->  x  e.  On )
3 tfrlemisucfn.2 . . . . . . . . . . . 12  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
43tfrlem3-2d 6177 . . . . . . . . . . 11  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
54simprd 113 . . . . . . . . . 10  |-  ( ph  ->  ( F `  g
)  e.  _V )
653ad2ant1 987 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  ( F `  g )  e.  _V )
7 vex 2663 . . . . . . . . . . . . 13  |-  z  e. 
_V
8 opexg 4120 . . . . . . . . . . . . 13  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  ->  <. z ,  ( F `
 g ) >.  e.  _V )
97, 5, 8sylancr 410 . . . . . . . . . . . 12  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  _V )
10 snidg 3524 . . . . . . . . . . . 12  |-  ( <.
z ,  ( F `
 g ) >.  e.  _V  ->  <. z ,  ( F `  g
) >.  e.  { <. z ,  ( F `  g ) >. } )
11 elun2 3214 . . . . . . . . . . . 12  |-  ( <.
z ,  ( F `
 g ) >.  e.  { <. z ,  ( F `  g )
>. }  ->  <. z ,  ( F `  g
) >.  e.  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
129, 10, 113syl 17 . . . . . . . . . . 11  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
13123ad2ant1 987 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) )
14 simp2r 993 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  z  e.  x
)
15 simp3l 994 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  g  Fn  z
)
16 onelon 4276 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
17 rspe 2458 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  On  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) ) )  ->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
1816, 17sylan 281 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  z  e.  x )  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )  ->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
19 tfrlemisucfn.1 . . . . . . . . . . . . . . 15  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
20 vex 2663 . . . . . . . . . . . . . . 15  |-  g  e. 
_V
2119, 20tfrlem3a 6175 . . . . . . . . . . . . . 14  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
2218, 21sylibr 133 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\  z  e.  x )  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )  ->  g  e.  A )
23223adant1 984 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  g  e.  A
)
2414, 15, 233jca 1146 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  ( z  e.  x  /\  g  Fn  z  /\  g  e.  A ) )
25 snexg 4078 . . . . . . . . . . . . . 14  |-  ( <.
z ,  ( F `
 g ) >.  e.  _V  ->  { <. z ,  ( F `  g ) >. }  e.  _V )
26 unexg 4334 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  _V  /\  {
<. z ,  ( F `
 g ) >. }  e.  _V )  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  _V )
2720, 26mpan 420 . . . . . . . . . . . . . 14  |-  ( {
<. z ,  ( F `
 g ) >. }  e.  _V  ->  ( g  u.  { <. z ,  ( F `  g ) >. } )  e.  _V )
289, 25, 273syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  _V )
29 isset 2666 . . . . . . . . . . . . 13  |-  ( ( g  u.  { <. z ,  ( F `  g ) >. } )  e.  _V  <->  E. h  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) )
3028, 29sylib 121 . . . . . . . . . . . 12  |-  ( ph  ->  E. h  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
31303ad2ant1 987 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  E. h  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
32 simpr3 974 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) ) )  ->  h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) )
33 19.8a 1554 . . . . . . . . . . . . . . . 16  |-  ( ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) )  ->  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) )
34 rspe 2458 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  x  /\  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) )  ->  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) )
35 tfrlemi1.3 . . . . . . . . . . . . . . . . . 18  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
3635abeq2i 2228 . . . . . . . . . . . . . . . . 17  |-  ( h  e.  B  <->  E. z  e.  x  E. g
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) ) )
3734, 36sylibr 133 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  x  /\  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) )  ->  h  e.  B
)
3833, 37sylan2 284 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  x  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) ) )  ->  h  e.  B )
3932, 38eqeltrrd 2195 . . . . . . . . . . . . . 14  |-  ( ( z  e.  x  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) ) )  ->  (
g  u.  { <. z ,  ( F `  g ) >. } )  e.  B )
40393exp2 1188 . . . . . . . . . . . . 13  |-  ( z  e.  x  ->  (
g  Fn  z  -> 
( g  e.  A  ->  ( h  =  ( g  u.  { <. z ,  ( F `  g ) >. } )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  B
) ) ) )
41403imp 1160 . . . . . . . . . . . 12  |-  ( ( z  e.  x  /\  g  Fn  z  /\  g  e.  A )  ->  ( h  =  ( g  u.  { <. z ,  ( F `  g ) >. } )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  B
) )
4241exlimdv 1775 . . . . . . . . . . 11  |-  ( ( z  e.  x  /\  g  Fn  z  /\  g  e.  A )  ->  ( E. h  h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  (
g  u.  { <. z ,  ( F `  g ) >. } )  e.  B ) )
4324, 31, 42sylc 62 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  B
)
44 elunii 3711 . . . . . . . . . 10  |-  ( (
<. z ,  ( F `
 g ) >.  e.  ( g  u.  { <. z ,  ( F `
 g ) >. } )  /\  (
g  u.  { <. z ,  ( F `  g ) >. } )  e.  B )  ->  <. z ,  ( F `
 g ) >.  e.  U. B )
4513, 43, 44syl2anc 408 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  <. z ,  ( F `  g )
>.  e.  U. B )
46 opeq2 3676 . . . . . . . . . . . 12  |-  ( w  =  ( F `  g )  ->  <. z ,  w >.  =  <. z ,  ( F `  g ) >. )
4746eleq1d 2186 . . . . . . . . . . 11  |-  ( w  =  ( F `  g )  ->  ( <. z ,  w >.  e. 
U. B  <->  <. z ,  ( F `  g
) >.  e.  U. B
) )
4847spcegv 2748 . . . . . . . . . 10  |-  ( ( F `  g )  e.  _V  ->  ( <. z ,  ( F `
 g ) >.  e.  U. B  ->  E. w <. z ,  w >.  e. 
U. B ) )
497eldm2 4707 . . . . . . . . . 10  |-  ( z  e.  dom  U. B  <->  E. w <. z ,  w >.  e.  U. B )
5048, 49syl6ibr 161 . . . . . . . . 9  |-  ( ( F `  g )  e.  _V  ->  ( <. z ,  ( F `
 g ) >.  e.  U. B  ->  z  e.  dom  U. B ) )
516, 45, 50sylc 62 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x )  /\  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) )  ->  z  e.  dom  U. B )
52513expia 1168 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x ) )  -> 
( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) )  ->  z  e.  dom  U. B ) )
5352exlimdv 1775 . . . . . 6  |-  ( (
ph  /\  ( x  e.  On  /\  z  e.  x ) )  -> 
( E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
z  e.  dom  U. B ) )
5453anassrs 397 . . . . 5  |-  ( ( ( ph  /\  x  e.  On )  /\  z  e.  x )  ->  ( E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) )  ->  z  e.  dom  U. B ) )
5554ralimdva 2476 . . . 4  |-  ( (
ph  /\  x  e.  On )  ->  ( A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) )  ->  A. z  e.  x  z  e.  dom  U. B
) )
562, 55mpdan 417 . . 3  |-  ( ph  ->  ( A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  A. z  e.  x  z  e.  dom  U. B
) )
571, 56mpd 13 . 2  |-  ( ph  ->  A. z  e.  x  z  e.  dom  U. B
)
58 dfss3 3057 . 2  |-  ( x 
C_  dom  U. B  <->  A. z  e.  x  z  e.  dom  U. B )
5957, 58sylibr 133 1  |-  ( ph  ->  x  C_  dom  U. B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 947   A.wal 1314    = wceq 1316   E.wex 1453    e. wcel 1465   {cab 2103   A.wral 2393   E.wrex 2394   _Vcvv 2660    u. cun 3039    C_ wss 3041   {csn 3497   <.cop 3500   U.cuni 3706   Oncon0 4255   dom cdm 4509    |` cres 4511   Fun wfun 5087    Fn wfn 5088   ` cfv 5093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-tr 3997  df-iord 4258  df-on 4260  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-res 4521  df-iota 5058  df-fun 5095  df-fn 5096  df-fv 5101
This theorem is referenced by:  tfrlemibfn  6193
  Copyright terms: Public domain W3C validator