ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidsslem Unicode version

Theorem dvidsslem 15037
Description: Lemma for dvconstss 15042. Analogue of dvidlemap 15035 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidsslem.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvidsslem.j  |-  J  =  ( Kt  S )
dvidsslem.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
dvidsslem.1  |-  ( ph  ->  F : X --> CC )
dvidsslem.x  |-  ( ph  ->  X  e.  J )
dvidsslem.2  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
dvidsslem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidsslem  |-  ( ph  ->  ( S  _D  F
)  =  ( X  X.  { B }
) )
Distinct variable groups:    x, z, B   
x, F, z    ph, x, z    x, S, z    x, X, z
Allowed substitution hints:    J( x, z)    K( x, z)

Proof of Theorem dvidsslem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidsslem.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 ssidd 3205 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
3 dvidsslem.j . . . . . . . . . 10  |-  J  =  ( Kt  S )
4 restsspw 12953 . . . . . . . . . 10  |-  ( Kt  S )  C_  ~P S
53, 4eqsstri 3216 . . . . . . . . 9  |-  J  C_  ~P S
6 dvidsslem.x . . . . . . . . 9  |-  ( ph  ->  X  e.  J )
75, 6sselid 3182 . . . . . . . 8  |-  ( ph  ->  X  e.  ~P S
)
87elpwid 3617 . . . . . . 7  |-  ( ph  ->  X  C_  S )
9 cnex 8022 . . . . . . . 8  |-  CC  e.  _V
109a1i 9 . . . . . . 7  |-  ( ph  ->  CC  e.  _V )
11 pmss12g 6743 . . . . . . 7  |-  ( ( ( CC  C_  CC  /\  X  C_  S )  /\  ( CC  e.  _V  /\  S  e.  { RR ,  CC } ) )  ->  ( CC  ^pm  X )  C_  ( CC  ^pm 
S ) )
122, 8, 10, 1, 11syl22anc 1250 . . . . . 6  |-  ( ph  ->  ( CC  ^pm  X
)  C_  ( CC  ^pm 
S ) )
13 dvidsslem.1 . . . . . . 7  |-  ( ph  ->  F : X --> CC )
14 fpmg 6742 . . . . . . 7  |-  ( ( X  e.  J  /\  CC  e.  _V  /\  F : X --> CC )  ->  F  e.  ( CC  ^pm 
X ) )
156, 10, 13, 14syl3anc 1249 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  X ) )
1612, 15sseldd 3185 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
17 dvfgg 15032 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
181, 16, 17syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
19 recnprss 15031 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
201, 19syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
2120, 13, 8dvbss 15029 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  C_  X
)
22 reldvg 15023 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
2320, 16, 22syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  F ) )
2423adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  F
) )
25 dvidsslem.k . . . . . . . . . . . . . . . 16  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
2625cntoptop 14877 . . . . . . . . . . . . . . 15  |-  K  e. 
Top
2726a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  Top )
28 resttop 14514 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  S  e.  { RR ,  CC } )  -> 
( Kt  S )  e.  Top )
2927, 1, 28syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Kt  S )  e.  Top )
303, 29eqeltrid 2283 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  Top )
31 isopn3i 14479 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  X  e.  J )  ->  ( ( int `  J
) `  X )  =  X )
3230, 6, 31syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  J
) `  X )  =  X )
3332eqcomd 2202 . . . . . . . . . 10  |-  ( ph  ->  X  =  ( ( int `  J ) `
 X ) )
3433eleq2d 2266 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X  <->  x  e.  ( ( int `  J ) `  X
) ) )
3534biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  ( ( int `  J
) `  X )
)
36 limcresi 15010 . . . . . . . . . 10  |-  ( ( z  e.  X  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x } ) lim CC  x
)
37 dvidsslem.3 . . . . . . . . . . . . . 14  |-  B  e.  CC
3837a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
398, 20sstrd 3194 . . . . . . . . . . . . 13  |-  ( ph  ->  X  C_  CC )
40 cncfmptc 14940 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  X  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
4138, 39, 2, 40syl3anc 1249 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  X  |->  B )  e.  ( X -cn-> CC ) )
4241adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
43 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
44 eqidd 2197 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
4542, 43, 44cnmptlimc 15018 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( z  e.  X  |->  B ) lim CC  x ) )
4636, 45sselid 3182 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) lim CC  x )
)
47 breq1 4037 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
4847elrab 2920 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  X  |  w #  x } 
<->  ( z  e.  X  /\  z #  x )
)
49 dvidsslem.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
50493exp2 1227 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  X  ->  ( z  e.  X  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
5150imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  (
z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
5248, 51sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  z  e.  { w  e.  X  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
5352mpteq2dva 4124 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  X  |  w #  x }  |->  B ) )
54 ssrab2 3269 . . . . . . . . . . . 12  |-  { w  e.  X  |  w #  x }  C_  X
55 resmpt 4995 . . . . . . . . . . . 12  |-  ( { w  e.  X  |  w #  x }  C_  X  ->  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
)  =  ( z  e.  { w  e.  X  |  w #  x }  |->  B ) )
5654, 55ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x } )  =  ( z  e.  { w  e.  X  |  w #  x }  |->  B )
5753, 56eqtr4di 2247 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) )
5857oveq1d 5940 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  =  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) lim CC  x )
)
5946, 58eleqtrrd 2276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( z  e. 
{ w  e.  X  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
60 eqid 2196 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
613, 25, 60, 20, 13, 8eldvap 15026 . . . . . . . . 9  |-  ( ph  ->  ( x ( S  _D  F ) B  <-> 
( x  e.  ( ( int `  J
) `  X )  /\  B  e.  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
6261adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
x ( S  _D  F ) B  <->  ( x  e.  ( ( int `  J
) `  X )  /\  B  e.  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
6335, 59, 62mpbir2and 946 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) B )
64 releldm 4902 . . . . . . 7  |-  ( ( Rel  ( S  _D  F )  /\  x
( S  _D  F
) B )  ->  x  e.  dom  ( S  _D  F ) )
6524, 63, 64syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
6621, 65eqelssd 3203 . . . . 5  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
6766feq2d 5398 . . . 4  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6818, 67mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6968ffnd 5411 . 2  |-  ( ph  ->  ( S  _D  F
)  Fn  X )
70 fnconstg 5458 . . 3  |-  ( B  e.  CC  ->  ( X  X.  { B }
)  Fn  X )
7137, 70mp1i 10 . 2  |-  ( ph  ->  ( X  X.  { B } )  Fn  X
)
7218adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
7372ffund 5414 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  Fun  ( S  _D  F
) )
74 funbrfvb 5606 . . . . 5  |-  ( ( Fun  ( S  _D  F )  /\  x  e.  dom  ( S  _D  F ) )  -> 
( ( ( S  _D  F ) `  x )  =  B  <-> 
x ( S  _D  F ) B ) )
7573, 65, 74syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  =  B  <->  x ( S  _D  F ) B ) )
7663, 75mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  B )
77 fvconst2g 5779 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  X )  ->  ( ( X  X.  { B } ) `  x )  =  B )
7838, 77sylan 283 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( X  X.  { B } ) `  x
)  =  B )
7976, 78eqtr4d 2232 . 2  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  ( ( X  X.  { B }
) `  x )
)
8069, 71, 79eqfnfvd 5665 1  |-  ( ph  ->  ( S  _D  F
)  =  ( X  X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   ~Pcpw 3606   {csn 3623   {cpr 3624   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662   dom cdm 4664    |` cres 4666    o. ccom 4668   Rel wrel 4669   Fun wfun 5253    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925    ^pm cpm 6717   CCcc 7896   RRcr 7897    - cmin 8216   # cap 8627    / cdiv 8718   abscabs 11181   ↾t crest 12943   MetOpencmopn 14175   Topctop 14341   intcnt 14437   -cn->ccncf 14914   lim CC climc 14998    _D cdv 14999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pm 6719  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by:  dvconstss  15042
  Copyright terms: Public domain W3C validator