ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidsslem Unicode version

Theorem dvidsslem 14872
Description: Lemma for dvconstss 14877. Analogue of dvidlemap 14870 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidsslem.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvidsslem.j  |-  J  =  ( Kt  S )
dvidsslem.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
dvidsslem.1  |-  ( ph  ->  F : X --> CC )
dvidsslem.x  |-  ( ph  ->  X  e.  J )
dvidsslem.2  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
dvidsslem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidsslem  |-  ( ph  ->  ( S  _D  F
)  =  ( X  X.  { B }
) )
Distinct variable groups:    x, z, B   
x, F, z    ph, x, z    x, S, z    x, X, z
Allowed substitution hints:    J( x, z)    K( x, z)

Proof of Theorem dvidsslem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidsslem.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 ssidd 3201 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
3 dvidsslem.j . . . . . . . . . 10  |-  J  =  ( Kt  S )
4 restsspw 12863 . . . . . . . . . 10  |-  ( Kt  S )  C_  ~P S
53, 4eqsstri 3212 . . . . . . . . 9  |-  J  C_  ~P S
6 dvidsslem.x . . . . . . . . 9  |-  ( ph  ->  X  e.  J )
75, 6sselid 3178 . . . . . . . 8  |-  ( ph  ->  X  e.  ~P S
)
87elpwid 3613 . . . . . . 7  |-  ( ph  ->  X  C_  S )
9 cnex 7998 . . . . . . . 8  |-  CC  e.  _V
109a1i 9 . . . . . . 7  |-  ( ph  ->  CC  e.  _V )
11 pmss12g 6731 . . . . . . 7  |-  ( ( ( CC  C_  CC  /\  X  C_  S )  /\  ( CC  e.  _V  /\  S  e.  { RR ,  CC } ) )  ->  ( CC  ^pm  X )  C_  ( CC  ^pm 
S ) )
122, 8, 10, 1, 11syl22anc 1250 . . . . . 6  |-  ( ph  ->  ( CC  ^pm  X
)  C_  ( CC  ^pm 
S ) )
13 dvidsslem.1 . . . . . . 7  |-  ( ph  ->  F : X --> CC )
14 fpmg 6730 . . . . . . 7  |-  ( ( X  e.  J  /\  CC  e.  _V  /\  F : X --> CC )  ->  F  e.  ( CC  ^pm 
X ) )
156, 10, 13, 14syl3anc 1249 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  X ) )
1612, 15sseldd 3181 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
17 dvfgg 14867 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
181, 16, 17syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
19 recnprss 14866 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
201, 19syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
2120, 13, 8dvbss 14864 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  C_  X
)
22 reldvg 14858 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
2320, 16, 22syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  F ) )
2423adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  F
) )
25 dvidsslem.k . . . . . . . . . . . . . . . 16  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
2625cntoptop 14712 . . . . . . . . . . . . . . 15  |-  K  e. 
Top
2726a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  Top )
28 resttop 14349 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  S  e.  { RR ,  CC } )  -> 
( Kt  S )  e.  Top )
2927, 1, 28syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Kt  S )  e.  Top )
303, 29eqeltrid 2280 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  Top )
31 isopn3i 14314 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  X  e.  J )  ->  ( ( int `  J
) `  X )  =  X )
3230, 6, 31syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  J
) `  X )  =  X )
3332eqcomd 2199 . . . . . . . . . 10  |-  ( ph  ->  X  =  ( ( int `  J ) `
 X ) )
3433eleq2d 2263 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X  <->  x  e.  ( ( int `  J ) `  X
) ) )
3534biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  ( ( int `  J
) `  X )
)
36 limcresi 14845 . . . . . . . . . 10  |-  ( ( z  e.  X  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x } ) lim CC  x
)
37 dvidsslem.3 . . . . . . . . . . . . . 14  |-  B  e.  CC
3837a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
398, 20sstrd 3190 . . . . . . . . . . . . 13  |-  ( ph  ->  X  C_  CC )
40 cncfmptc 14775 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  X  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
4138, 39, 2, 40syl3anc 1249 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  X  |->  B )  e.  ( X -cn-> CC ) )
4241adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
43 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
44 eqidd 2194 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
4542, 43, 44cnmptlimc 14853 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( z  e.  X  |->  B ) lim CC  x ) )
4636, 45sselid 3178 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) lim CC  x )
)
47 breq1 4033 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
4847elrab 2917 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  X  |  w #  x } 
<->  ( z  e.  X  /\  z #  x )
)
49 dvidsslem.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
50493exp2 1227 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  X  ->  ( z  e.  X  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
5150imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  (
z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
5248, 51sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  z  e.  { w  e.  X  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
5352mpteq2dva 4120 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  X  |  w #  x }  |->  B ) )
54 ssrab2 3265 . . . . . . . . . . . 12  |-  { w  e.  X  |  w #  x }  C_  X
55 resmpt 4991 . . . . . . . . . . . 12  |-  ( { w  e.  X  |  w #  x }  C_  X  ->  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
)  =  ( z  e.  { w  e.  X  |  w #  x }  |->  B ) )
5654, 55ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x } )  =  ( z  e.  { w  e.  X  |  w #  x }  |->  B )
5753, 56eqtr4di 2244 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) )
5857oveq1d 5934 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  =  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) lim CC  x )
)
5946, 58eleqtrrd 2273 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( z  e. 
{ w  e.  X  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
60 eqid 2193 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
613, 25, 60, 20, 13, 8eldvap 14861 . . . . . . . . 9  |-  ( ph  ->  ( x ( S  _D  F ) B  <-> 
( x  e.  ( ( int `  J
) `  X )  /\  B  e.  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
6261adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
x ( S  _D  F ) B  <->  ( x  e.  ( ( int `  J
) `  X )  /\  B  e.  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
6335, 59, 62mpbir2and 946 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) B )
64 releldm 4898 . . . . . . 7  |-  ( ( Rel  ( S  _D  F )  /\  x
( S  _D  F
) B )  ->  x  e.  dom  ( S  _D  F ) )
6524, 63, 64syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
6621, 65eqelssd 3199 . . . . 5  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
6766feq2d 5392 . . . 4  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6818, 67mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6968ffnd 5405 . 2  |-  ( ph  ->  ( S  _D  F
)  Fn  X )
70 fnconstg 5452 . . 3  |-  ( B  e.  CC  ->  ( X  X.  { B }
)  Fn  X )
7137, 70mp1i 10 . 2  |-  ( ph  ->  ( X  X.  { B } )  Fn  X
)
7218adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
7372ffund 5408 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  Fun  ( S  _D  F
) )
74 funbrfvb 5600 . . . . 5  |-  ( ( Fun  ( S  _D  F )  /\  x  e.  dom  ( S  _D  F ) )  -> 
( ( ( S  _D  F ) `  x )  =  B  <-> 
x ( S  _D  F ) B ) )
7573, 65, 74syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  =  B  <->  x ( S  _D  F ) B ) )
7663, 75mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  B )
77 fvconst2g 5773 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  X )  ->  ( ( X  X.  { B } ) `  x )  =  B )
7838, 77sylan 283 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( X  X.  { B } ) `  x
)  =  B )
7976, 78eqtr4d 2229 . 2  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  ( ( X  X.  { B }
) `  x )
)
8069, 71, 79eqfnfvd 5659 1  |-  ( ph  ->  ( S  _D  F
)  =  ( X  X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602   {csn 3619   {cpr 3620   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658   dom cdm 4660    |` cres 4662    o. ccom 4664   Rel wrel 4665   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919    ^pm cpm 6705   CCcc 7872   RRcr 7873    - cmin 8192   # cap 8602    / cdiv 8693   abscabs 11144   ↾t crest 12853   MetOpencmopn 14040   Topctop 14176   intcnt 14272   -cn->ccncf 14749   lim CC climc 14833    _D cdv 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-pm 6707  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-cncf 14750  df-limced 14835  df-dvap 14836
This theorem is referenced by:  dvconstss  14877
  Copyright terms: Public domain W3C validator