ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidsslem Unicode version

Theorem dvidsslem 15209
Description: Lemma for dvconstss 15214. Analogue of dvidlemap 15207 where  F is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidsslem.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvidsslem.j  |-  J  =  ( Kt  S )
dvidsslem.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
dvidsslem.1  |-  ( ph  ->  F : X --> CC )
dvidsslem.x  |-  ( ph  ->  X  e.  J )
dvidsslem.2  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
dvidsslem.3  |-  B  e.  CC
Assertion
Ref Expression
dvidsslem  |-  ( ph  ->  ( S  _D  F
)  =  ( X  X.  { B }
) )
Distinct variable groups:    x, z, B   
x, F, z    ph, x, z    x, S, z    x, X, z
Allowed substitution hints:    J( x, z)    K( x, z)

Proof of Theorem dvidsslem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dvidsslem.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 ssidd 3215 . . . . . . 7  |-  ( ph  ->  CC  C_  CC )
3 dvidsslem.j . . . . . . . . . 10  |-  J  =  ( Kt  S )
4 restsspw 13125 . . . . . . . . . 10  |-  ( Kt  S )  C_  ~P S
53, 4eqsstri 3226 . . . . . . . . 9  |-  J  C_  ~P S
6 dvidsslem.x . . . . . . . . 9  |-  ( ph  ->  X  e.  J )
75, 6sselid 3192 . . . . . . . 8  |-  ( ph  ->  X  e.  ~P S
)
87elpwid 3628 . . . . . . 7  |-  ( ph  ->  X  C_  S )
9 cnex 8056 . . . . . . . 8  |-  CC  e.  _V
109a1i 9 . . . . . . 7  |-  ( ph  ->  CC  e.  _V )
11 pmss12g 6769 . . . . . . 7  |-  ( ( ( CC  C_  CC  /\  X  C_  S )  /\  ( CC  e.  _V  /\  S  e.  { RR ,  CC } ) )  ->  ( CC  ^pm  X )  C_  ( CC  ^pm 
S ) )
122, 8, 10, 1, 11syl22anc 1251 . . . . . 6  |-  ( ph  ->  ( CC  ^pm  X
)  C_  ( CC  ^pm 
S ) )
13 dvidsslem.1 . . . . . . 7  |-  ( ph  ->  F : X --> CC )
14 fpmg 6768 . . . . . . 7  |-  ( ( X  e.  J  /\  CC  e.  _V  /\  F : X --> CC )  ->  F  e.  ( CC  ^pm 
X ) )
156, 10, 13, 14syl3anc 1250 . . . . . 6  |-  ( ph  ->  F  e.  ( CC 
^pm  X ) )
1612, 15sseldd 3195 . . . . 5  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
17 dvfgg 15204 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
) )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
181, 16, 17syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
19 recnprss 15203 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
201, 19syl 14 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
2120, 13, 8dvbss 15201 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  F )  C_  X
)
22 reldvg 15195 . . . . . . . . 9  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  Rel  ( S  _D  F
) )
2320, 16, 22syl2anc 411 . . . . . . . 8  |-  ( ph  ->  Rel  ( S  _D  F ) )
2423adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  Rel  ( S  _D  F
) )
25 dvidsslem.k . . . . . . . . . . . . . . . 16  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
2625cntoptop 15049 . . . . . . . . . . . . . . 15  |-  K  e. 
Top
2726a1i 9 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  Top )
28 resttop 14686 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  S  e.  { RR ,  CC } )  -> 
( Kt  S )  e.  Top )
2927, 1, 28syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Kt  S )  e.  Top )
303, 29eqeltrid 2293 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  Top )
31 isopn3i 14651 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  X  e.  J )  ->  ( ( int `  J
) `  X )  =  X )
3230, 6, 31syl2anc 411 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  J
) `  X )  =  X )
3332eqcomd 2212 . . . . . . . . . 10  |-  ( ph  ->  X  =  ( ( int `  J ) `
 X ) )
3433eleq2d 2276 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X  <->  x  e.  ( ( int `  J ) `  X
) ) )
3534biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  ( ( int `  J
) `  X )
)
36 limcresi 15182 . . . . . . . . . 10  |-  ( ( z  e.  X  |->  B ) lim CC  x ) 
C_  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x } ) lim CC  x
)
37 dvidsslem.3 . . . . . . . . . . . . . 14  |-  B  e.  CC
3837a1i 9 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
398, 20sstrd 3204 . . . . . . . . . . . . 13  |-  ( ph  ->  X  C_  CC )
40 cncfmptc 15112 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  X  C_  CC  /\  CC  C_  CC )  ->  (
z  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
4138, 39, 2, 40syl3anc 1250 . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  X  |->  B )  e.  ( X -cn-> CC ) )
4241adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  X  |->  B )  e.  ( X
-cn-> CC ) )
43 simpr 110 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
44 eqidd 2207 . . . . . . . . . . 11  |-  ( z  =  x  ->  B  =  B )
4542, 43, 44cnmptlimc 15190 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( z  e.  X  |->  B ) lim CC  x ) )
4636, 45sselid 3192 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) lim CC  x )
)
47 breq1 4050 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
w #  x  <->  z #  x
) )
4847elrab 2930 . . . . . . . . . . . . 13  |-  ( z  e.  { w  e.  X  |  w #  x } 
<->  ( z  e.  X  /\  z #  x )
)
49 dvidsslem.2 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  X  /\  z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
50493exp2 1228 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  X  ->  ( z  e.  X  ->  ( z #  x  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B ) ) ) )
5150imp43 355 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  (
z  e.  X  /\  z #  x ) )  -> 
( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) )  =  B )
5248, 51sylan2b 287 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  z  e.  { w  e.  X  |  w #  x }
)  ->  ( (
( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) )  =  B )
5352mpteq2dva 4138 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( z  e. 
{ w  e.  X  |  w #  x }  |->  B ) )
54 ssrab2 3279 . . . . . . . . . . . 12  |-  { w  e.  X  |  w #  x }  C_  X
55 resmpt 5012 . . . . . . . . . . . 12  |-  ( { w  e.  X  |  w #  x }  C_  X  ->  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
)  =  ( z  e.  { w  e.  X  |  w #  x }  |->  B ) )
5654, 55ax-mp 5 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x } )  =  ( z  e.  { w  e.  X  |  w #  x }  |->  B )
5753, 56eqtr4di 2257 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )  =  ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) )
5857oveq1d 5966 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  X )  ->  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x )  =  ( ( ( z  e.  X  |->  B )  |`  { w  e.  X  |  w #  x }
) lim CC  x )
)
5946, 58eleqtrrd 2286 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  ( ( z  e. 
{ w  e.  X  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )
60 eqid 2206 . . . . . . . . . 10  |-  ( z  e.  { w  e.  X  |  w #  x }  |->  ( ( ( F `  z )  -  ( F `  x ) )  / 
( z  -  x
) ) )  =  ( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) )
613, 25, 60, 20, 13, 8eldvap 15198 . . . . . . . . 9  |-  ( ph  ->  ( x ( S  _D  F ) B  <-> 
( x  e.  ( ( int `  J
) `  X )  /\  B  e.  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
6261adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
x ( S  _D  F ) B  <->  ( x  e.  ( ( int `  J
) `  X )  /\  B  e.  (
( z  e.  {
w  e.  X  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) ) ) )
6335, 59, 62mpbir2and 947 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  x
( S  _D  F
) B )
64 releldm 4918 . . . . . . 7  |-  ( ( Rel  ( S  _D  F )  /\  x
( S  _D  F
) B )  ->  x  e.  dom  ( S  _D  F ) )
6524, 63, 64syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  dom  ( S  _D  F ) )
6621, 65eqelssd 3213 . . . . 5  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
6766feq2d 5419 . . . 4  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
6818, 67mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
6968ffnd 5432 . 2  |-  ( ph  ->  ( S  _D  F
)  Fn  X )
70 fnconstg 5480 . . 3  |-  ( B  e.  CC  ->  ( X  X.  { B }
)  Fn  X )
7137, 70mp1i 10 . 2  |-  ( ph  ->  ( X  X.  { B } )  Fn  X
)
7218adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( S  _D  F ) : dom  ( S  _D  F ) --> CC )
7372ffund 5435 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  Fun  ( S  _D  F
) )
74 funbrfvb 5628 . . . . 5  |-  ( ( Fun  ( S  _D  F )  /\  x  e.  dom  ( S  _D  F ) )  -> 
( ( ( S  _D  F ) `  x )  =  B  <-> 
x ( S  _D  F ) B ) )
7573, 65, 74syl2anc 411 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  =  B  <->  x ( S  _D  F ) B ) )
7663, 75mpbird 167 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  B )
77 fvconst2g 5805 . . . 4  |-  ( ( B  e.  CC  /\  x  e.  X )  ->  ( ( X  X.  { B } ) `  x )  =  B )
7838, 77sylan 283 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( X  X.  { B } ) `  x
)  =  B )
7976, 78eqtr4d 2242 . 2  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  ( ( X  X.  { B }
) `  x )
)
8069, 71, 79eqfnfvd 5687 1  |-  ( ph  ->  ( S  _D  F
)  =  ( X  X.  { B }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773    C_ wss 3167   ~Pcpw 3617   {csn 3634   {cpr 3635   class class class wbr 4047    |-> cmpt 4109    X. cxp 4677   dom cdm 4679    |` cres 4681    o. ccom 4683   Rel wrel 4684   Fun wfun 5270    Fn wfn 5271   -->wf 5272   ` cfv 5276  (class class class)co 5951    ^pm cpm 6743   CCcc 7930   RRcr 7931    - cmin 8250   # cap 8661    / cdiv 8752   abscabs 11352   ↾t crest 13115   MetOpencmopn 14347   Topctop 14513   intcnt 14609   -cn->ccncf 15086   lim CC climc 15170    _D cdv 15171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-pm 6745  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-cncf 15087  df-limced 15172  df-dvap 15173
This theorem is referenced by:  dvconstss  15214
  Copyright terms: Public domain W3C validator