| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvidsslem | Unicode version | ||
| Description: Lemma for dvconstss 15357. Analogue of dvidlemap 15350 where |
| Ref | Expression |
|---|---|
| dvidsslem.s |
|
| dvidsslem.j |
|
| dvidsslem.k |
|
| dvidsslem.1 |
|
| dvidsslem.x |
|
| dvidsslem.2 |
|
| dvidsslem.3 |
|
| Ref | Expression |
|---|---|
| dvidsslem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvidsslem.s |
. . . . 5
| |
| 2 | ssidd 3245 |
. . . . . . 7
| |
| 3 | dvidsslem.j |
. . . . . . . . . 10
| |
| 4 | restsspw 13268 |
. . . . . . . . . 10
| |
| 5 | 3, 4 | eqsstri 3256 |
. . . . . . . . 9
|
| 6 | dvidsslem.x |
. . . . . . . . 9
| |
| 7 | 5, 6 | sselid 3222 |
. . . . . . . 8
|
| 8 | 7 | elpwid 3660 |
. . . . . . 7
|
| 9 | cnex 8111 |
. . . . . . . 8
| |
| 10 | 9 | a1i 9 |
. . . . . . 7
|
| 11 | pmss12g 6812 |
. . . . . . 7
| |
| 12 | 2, 8, 10, 1, 11 | syl22anc 1272 |
. . . . . 6
|
| 13 | dvidsslem.1 |
. . . . . . 7
| |
| 14 | fpmg 6811 |
. . . . . . 7
| |
| 15 | 6, 10, 13, 14 | syl3anc 1271 |
. . . . . 6
|
| 16 | 12, 15 | sseldd 3225 |
. . . . 5
|
| 17 | dvfgg 15347 |
. . . . 5
| |
| 18 | 1, 16, 17 | syl2anc 411 |
. . . 4
|
| 19 | recnprss 15346 |
. . . . . . . 8
| |
| 20 | 1, 19 | syl 14 |
. . . . . . 7
|
| 21 | 20, 13, 8 | dvbss 15344 |
. . . . . 6
|
| 22 | reldvg 15338 |
. . . . . . . . 9
| |
| 23 | 20, 16, 22 | syl2anc 411 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | dvidsslem.k |
. . . . . . . . . . . . . . . 16
| |
| 26 | 25 | cntoptop 15192 |
. . . . . . . . . . . . . . 15
|
| 27 | 26 | a1i 9 |
. . . . . . . . . . . . . 14
|
| 28 | resttop 14829 |
. . . . . . . . . . . . . 14
| |
| 29 | 27, 1, 28 | syl2anc 411 |
. . . . . . . . . . . . 13
|
| 30 | 3, 29 | eqeltrid 2316 |
. . . . . . . . . . . 12
|
| 31 | isopn3i 14794 |
. . . . . . . . . . . 12
| |
| 32 | 30, 6, 31 | syl2anc 411 |
. . . . . . . . . . 11
|
| 33 | 32 | eqcomd 2235 |
. . . . . . . . . 10
|
| 34 | 33 | eleq2d 2299 |
. . . . . . . . 9
|
| 35 | 34 | biimpa 296 |
. . . . . . . 8
|
| 36 | limcresi 15325 |
. . . . . . . . . 10
| |
| 37 | dvidsslem.3 |
. . . . . . . . . . . . . 14
| |
| 38 | 37 | a1i 9 |
. . . . . . . . . . . . 13
|
| 39 | 8, 20 | sstrd 3234 |
. . . . . . . . . . . . 13
|
| 40 | cncfmptc 15255 |
. . . . . . . . . . . . 13
| |
| 41 | 38, 39, 2, 40 | syl3anc 1271 |
. . . . . . . . . . . 12
|
| 42 | 41 | adantr 276 |
. . . . . . . . . . 11
|
| 43 | simpr 110 |
. . . . . . . . . . 11
| |
| 44 | eqidd 2230 |
. . . . . . . . . . 11
| |
| 45 | 42, 43, 44 | cnmptlimc 15333 |
. . . . . . . . . 10
|
| 46 | 36, 45 | sselid 3222 |
. . . . . . . . 9
|
| 47 | breq1 4085 |
. . . . . . . . . . . . . 14
| |
| 48 | 47 | elrab 2959 |
. . . . . . . . . . . . 13
|
| 49 | dvidsslem.2 |
. . . . . . . . . . . . . . 15
| |
| 50 | 49 | 3exp2 1249 |
. . . . . . . . . . . . . 14
|
| 51 | 50 | imp43 355 |
. . . . . . . . . . . . 13
|
| 52 | 48, 51 | sylan2b 287 |
. . . . . . . . . . . 12
|
| 53 | 52 | mpteq2dva 4173 |
. . . . . . . . . . 11
|
| 54 | ssrab2 3309 |
. . . . . . . . . . . 12
| |
| 55 | resmpt 5049 |
. . . . . . . . . . . 12
| |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . 11
|
| 57 | 53, 56 | eqtr4di 2280 |
. . . . . . . . . 10
|
| 58 | 57 | oveq1d 6009 |
. . . . . . . . 9
|
| 59 | 46, 58 | eleqtrrd 2309 |
. . . . . . . 8
|
| 60 | eqid 2229 |
. . . . . . . . . 10
| |
| 61 | 3, 25, 60, 20, 13, 8 | eldvap 15341 |
. . . . . . . . 9
|
| 62 | 61 | adantr 276 |
. . . . . . . 8
|
| 63 | 35, 59, 62 | mpbir2and 950 |
. . . . . . 7
|
| 64 | releldm 4955 |
. . . . . . 7
| |
| 65 | 24, 63, 64 | syl2anc 411 |
. . . . . 6
|
| 66 | 21, 65 | eqelssd 3243 |
. . . . 5
|
| 67 | 66 | feq2d 5457 |
. . . 4
|
| 68 | 18, 67 | mpbid 147 |
. . 3
|
| 69 | 68 | ffnd 5470 |
. 2
|
| 70 | fnconstg 5519 |
. . 3
| |
| 71 | 37, 70 | mp1i 10 |
. 2
|
| 72 | 18 | adantr 276 |
. . . . . 6
|
| 73 | 72 | ffund 5473 |
. . . . 5
|
| 74 | funbrfvb 5668 |
. . . . 5
| |
| 75 | 73, 65, 74 | syl2anc 411 |
. . . 4
|
| 76 | 63, 75 | mpbird 167 |
. . 3
|
| 77 | fvconst2g 5846 |
. . . 4
| |
| 78 | 38, 77 | sylan 283 |
. . 3
|
| 79 | 76, 78 | eqtr4d 2265 |
. 2
|
| 80 | 69, 71, 79 | eqfnfvd 5728 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-map 6787 df-pm 6788 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-xneg 9956 df-xadd 9957 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-rest 13260 df-topgen 13279 df-psmet 14492 df-xmet 14493 df-met 14494 df-bl 14495 df-mopn 14496 df-top 14657 df-topon 14670 df-bases 14702 df-ntr 14755 df-cn 14847 df-cnp 14848 df-cncf 15230 df-limced 15315 df-dvap 15316 |
| This theorem is referenced by: dvconstss 15357 |
| Copyright terms: Public domain | W3C validator |