| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3orbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | orbi12d 794 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | orbi12d 794 |
. 2
|
| 6 | df-3or 981 |
. 2
| |
| 7 | df-3or 981 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 |
| This theorem is referenced by: ordtriexmid 4558 ontriexmidim 4559 wetriext 4614 nntri3or 6560 tridc 6969 exmidontriimlem3 7306 exmidontriimlem4 7307 exmidontriim 7308 onntri35 7320 ltsopi 7404 pitri3or 7406 nqtri3or 7480 elz 9345 ztri3or 9386 qtri3or 10347 trilpo 15774 trirec0 15775 reap0 15789 |
| Copyright terms: Public domain | W3C validator |