Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3orbi123d | Unicode version |
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | |
bi3d.2 | |
bi3d.3 |
Ref | Expression |
---|---|
3orbi123d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 | |
2 | bi3d.2 | . . . 4 | |
3 | 1, 2 | orbi12d 793 | . . 3 |
4 | bi3d.3 | . . 3 | |
5 | 3, 4 | orbi12d 793 | . 2 |
6 | df-3or 979 | . 2 | |
7 | df-3or 979 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 223 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wo 708 w3o 977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-3or 979 |
This theorem is referenced by: ordtriexmid 4514 ontriexmidim 4515 wetriext 4570 nntri3or 6484 tridc 6889 exmidontriimlem3 7212 exmidontriimlem4 7213 exmidontriim 7214 onntri35 7226 ltsopi 7294 pitri3or 7296 nqtri3or 7370 elz 9228 ztri3or 9269 qtri3or 10213 trilpo 14352 trirec0 14353 reap0 14367 |
Copyright terms: Public domain | W3C validator |