Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3orbi123d | Unicode version |
Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
Ref | Expression |
---|---|
bi3d.1 | |
bi3d.2 | |
bi3d.3 |
Ref | Expression |
---|---|
3orbi123d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | . . . 4 | |
2 | bi3d.2 | . . . 4 | |
3 | 1, 2 | orbi12d 783 | . . 3 |
4 | bi3d.3 | . . 3 | |
5 | 3, 4 | orbi12d 783 | . 2 |
6 | df-3or 964 | . 2 | |
7 | df-3or 964 | . 2 | |
8 | 5, 6, 7 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 w3o 962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-3or 964 |
This theorem is referenced by: ordtriexmid 4474 ontriexmidim 4475 wetriext 4530 nntri3or 6429 tridc 6833 exmidontriimlem3 7137 exmidontriimlem4 7138 exmidontriim 7139 onntri35 7151 ltsopi 7219 pitri3or 7221 nqtri3or 7295 elz 9148 ztri3or 9189 qtri3or 10120 trilpo 13563 trirec0 13564 reap0 13578 |
Copyright terms: Public domain | W3C validator |