| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3orbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | orbi12d 798 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | orbi12d 798 |
. 2
|
| 6 | df-3or 1003 |
. 2
| |
| 7 | df-3or 1003 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 |
| This theorem is referenced by: ordtriexmid 4613 ontriexmidim 4614 wetriext 4669 nntri3or 6639 tridc 7061 exmidontriimlem3 7405 exmidontriimlem4 7406 exmidontriim 7407 onntri35 7422 ltsopi 7507 pitri3or 7509 nqtri3or 7583 elz 9448 ztri3or 9489 qtri3or 10460 trilpo 16411 trirec0 16412 reap0 16426 |
| Copyright terms: Public domain | W3C validator |