| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3orbi123d | Unicode version | ||
| Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3d.1 |
|
| bi3d.2 |
|
| bi3d.3 |
|
| Ref | Expression |
|---|---|
| 3orbi123d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 |
. . . 4
| |
| 2 | bi3d.2 |
. . . 4
| |
| 3 | 1, 2 | orbi12d 794 |
. . 3
|
| 4 | bi3d.3 |
. . 3
| |
| 5 | 3, 4 | orbi12d 794 |
. 2
|
| 6 | df-3or 981 |
. 2
| |
| 7 | df-3or 981 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 |
| This theorem is referenced by: ordtriexmid 4557 ontriexmidim 4558 wetriext 4613 nntri3or 6551 tridc 6960 exmidontriimlem3 7290 exmidontriimlem4 7291 exmidontriim 7292 onntri35 7304 ltsopi 7387 pitri3or 7389 nqtri3or 7463 elz 9328 ztri3or 9369 qtri3or 10330 trilpo 15687 trirec0 15688 reap0 15702 |
| Copyright terms: Public domain | W3C validator |