ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tridc Unicode version

Theorem tridc 6856
Description: A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.)
Hypotheses
Ref Expression
tridc.po  |-  ( ph  ->  R  Po  A )
tridc.tri  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
tridc.b  |-  ( ph  ->  B  e.  A )
tridc.c  |-  ( ph  ->  C  e.  A )
Assertion
Ref Expression
tridc  |-  ( ph  -> DECID  B R C )
Distinct variable groups:    x, A, y   
x, B, y    y, C    x, R, y
Allowed substitution hints:    ph( x, y)    C( x)

Proof of Theorem tridc
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( (
ph  /\  B R C )  ->  B R C )
21orcd 723 . . 3  |-  ( (
ph  /\  B R C )  ->  ( B R C  \/  -.  B R C ) )
3 df-dc 825 . . 3  |-  (DECID  B R C  <->  ( B R C  \/  -.  B R C ) )
42, 3sylibr 133 . 2  |-  ( (
ph  /\  B R C )  -> DECID  B R C )
5 tridc.po . . . . . . 7  |-  ( ph  ->  R  Po  A )
6 tridc.c . . . . . . 7  |-  ( ph  ->  C  e.  A )
7 poirr 4279 . . . . . . 7  |-  ( ( R  Po  A  /\  C  e.  A )  ->  -.  C R C )
85, 6, 7syl2anc 409 . . . . . 6  |-  ( ph  ->  -.  C R C )
98adantr 274 . . . . 5  |-  ( (
ph  /\  B  =  C )  ->  -.  C R C )
10 simpr 109 . . . . . 6  |-  ( (
ph  /\  B  =  C )  ->  B  =  C )
1110breq1d 3986 . . . . 5  |-  ( (
ph  /\  B  =  C )  ->  ( B R C  <->  C R C ) )
129, 11mtbird 663 . . . 4  |-  ( (
ph  /\  B  =  C )  ->  -.  B R C )
1312olcd 724 . . 3  |-  ( (
ph  /\  B  =  C )  ->  ( B R C  \/  -.  B R C ) )
1413, 3sylibr 133 . 2  |-  ( (
ph  /\  B  =  C )  -> DECID  B R C )
15 tridc.b . . . . . . 7  |-  ( ph  ->  B  e.  A )
16 po2nr 4281 . . . . . . 7  |-  ( ( R  Po  A  /\  ( C  e.  A  /\  B  e.  A
) )  ->  -.  ( C R B  /\  B R C ) )
175, 6, 15, 16syl12anc 1225 . . . . . 6  |-  ( ph  ->  -.  ( C R B  /\  B R C ) )
1817adantr 274 . . . . 5  |-  ( (
ph  /\  C R B )  ->  -.  ( C R B  /\  B R C ) )
19 simplr 520 . . . . . 6  |-  ( ( ( ph  /\  C R B )  /\  B R C )  ->  C R B )
20 simpr 109 . . . . . 6  |-  ( ( ( ph  /\  C R B )  /\  B R C )  ->  B R C )
2119, 20jca 304 . . . . 5  |-  ( ( ( ph  /\  C R B )  /\  B R C )  ->  ( C R B  /\  B R C ) )
2218, 21mtand 655 . . . 4  |-  ( (
ph  /\  C R B )  ->  -.  B R C )
2322olcd 724 . . 3  |-  ( (
ph  /\  C R B )  ->  ( B R C  \/  -.  B R C ) )
2423, 3sylibr 133 . 2  |-  ( (
ph  /\  C R B )  -> DECID  B R C )
25 tridc.tri . . 3  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )
26 breq1 3979 . . . . 5  |-  ( x  =  B  ->  (
x R y  <->  B R
y ) )
27 eqeq1 2171 . . . . 5  |-  ( x  =  B  ->  (
x  =  y  <->  B  =  y ) )
28 breq2 3980 . . . . 5  |-  ( x  =  B  ->  (
y R x  <->  y R B ) )
2926, 27, 283orbi123d 1300 . . . 4  |-  ( x  =  B  ->  (
( x R y  \/  x  =  y  \/  y R x )  <->  ( B R y  \/  B  =  y  \/  y R B ) ) )
30 breq2 3980 . . . . 5  |-  ( y  =  C  ->  ( B R y  <->  B R C ) )
31 eqeq2 2174 . . . . 5  |-  ( y  =  C  ->  ( B  =  y  <->  B  =  C ) )
32 breq1 3979 . . . . 5  |-  ( y  =  C  ->  (
y R B  <->  C R B ) )
3330, 31, 323orbi123d 1300 . . . 4  |-  ( y  =  C  ->  (
( B R y  \/  B  =  y  \/  y R B )  <->  ( B R C  \/  B  =  C  \/  C R B ) ) )
3429, 33rspc2va 2839 . . 3  |-  ( ( ( B  e.  A  /\  C  e.  A
)  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
3515, 6, 25, 34syl21anc 1226 . 2  |-  ( ph  ->  ( B R C  \/  B  =  C  \/  C R B ) )
364, 14, 24, 35mpjao3dan 1296 1  |-  ( ph  -> DECID  B R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    \/ w3o 966    = wceq 1342    e. wcel 2135   A.wral 2442   class class class wbr 3976    Po wpo 4266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-v 2723  df-un 3115  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-po 4268
This theorem is referenced by:  fimax2gtrilemstep  6857
  Copyright terms: Public domain W3C validator