| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tridc | Unicode version | ||
| Description: A trichotomous order is decidable. (Contributed by Jim Kingdon, 5-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| tridc.po | 
 | 
| tridc.tri | 
 | 
| tridc.b | 
 | 
| tridc.c | 
 | 
| Ref | Expression | 
|---|---|
| tridc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . . 4
 | |
| 2 | 1 | orcd 734 | 
. . 3
 | 
| 3 | df-dc 836 | 
. . 3
 | |
| 4 | 2, 3 | sylibr 134 | 
. 2
 | 
| 5 | tridc.po | 
. . . . . . 7
 | |
| 6 | tridc.c | 
. . . . . . 7
 | |
| 7 | poirr 4342 | 
. . . . . . 7
 | |
| 8 | 5, 6, 7 | syl2anc 411 | 
. . . . . 6
 | 
| 9 | 8 | adantr 276 | 
. . . . 5
 | 
| 10 | simpr 110 | 
. . . . . 6
 | |
| 11 | 10 | breq1d 4043 | 
. . . . 5
 | 
| 12 | 9, 11 | mtbird 674 | 
. . . 4
 | 
| 13 | 12 | olcd 735 | 
. . 3
 | 
| 14 | 13, 3 | sylibr 134 | 
. 2
 | 
| 15 | tridc.b | 
. . . . . . 7
 | |
| 16 | po2nr 4344 | 
. . . . . . 7
 | |
| 17 | 5, 6, 15, 16 | syl12anc 1247 | 
. . . . . 6
 | 
| 18 | 17 | adantr 276 | 
. . . . 5
 | 
| 19 | simplr 528 | 
. . . . . 6
 | |
| 20 | simpr 110 | 
. . . . . 6
 | |
| 21 | 19, 20 | jca 306 | 
. . . . 5
 | 
| 22 | 18, 21 | mtand 666 | 
. . . 4
 | 
| 23 | 22 | olcd 735 | 
. . 3
 | 
| 24 | 23, 3 | sylibr 134 | 
. 2
 | 
| 25 | tridc.tri | 
. . 3
 | |
| 26 | breq1 4036 | 
. . . . 5
 | |
| 27 | eqeq1 2203 | 
. . . . 5
 | |
| 28 | breq2 4037 | 
. . . . 5
 | |
| 29 | 26, 27, 28 | 3orbi123d 1322 | 
. . . 4
 | 
| 30 | breq2 4037 | 
. . . . 5
 | |
| 31 | eqeq2 2206 | 
. . . . 5
 | |
| 32 | breq1 4036 | 
. . . . 5
 | |
| 33 | 30, 31, 32 | 3orbi123d 1322 | 
. . . 4
 | 
| 34 | 29, 33 | rspc2va 2882 | 
. . 3
 | 
| 35 | 15, 6, 25, 34 | syl21anc 1248 | 
. 2
 | 
| 36 | 4, 14, 24, 35 | mpjao3dan 1318 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-po 4331 | 
| This theorem is referenced by: fimax2gtrilemstep 6961 | 
| Copyright terms: Public domain | W3C validator |