Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qtri3or | Unicode version |
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
Ref | Expression |
---|---|
qtri3or |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9581 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | adantl 275 | . 2 |
4 | elq 9581 | . . . . . . 7 | |
5 | 4 | biimpi 119 | . . . . . 6 |
6 | 5 | ad3antrrr 489 | . . . . 5 |
7 | simplrl 530 | . . . . . . . . . 10 | |
8 | simplrr 531 | . . . . . . . . . . . 12 | |
9 | 8 | ad2antrr 485 | . . . . . . . . . . 11 |
10 | 9 | nnzd 9333 | . . . . . . . . . 10 |
11 | 7, 10 | zmulcld 9340 | . . . . . . . . 9 |
12 | simplrl 530 | . . . . . . . . . . 11 | |
13 | 12 | ad2antrr 485 | . . . . . . . . . 10 |
14 | simplrr 531 | . . . . . . . . . . 11 | |
15 | 14 | nnzd 9333 | . . . . . . . . . 10 |
16 | 13, 15 | zmulcld 9340 | . . . . . . . . 9 |
17 | ztri3or 9255 | . . . . . . . . 9 | |
18 | 11, 16, 17 | syl2anc 409 | . . . . . . . 8 |
19 | simpllr 529 | . . . . . . . . . . 11 | |
20 | 19 | breq2d 4001 | . . . . . . . . . 10 |
21 | breq1 3992 | . . . . . . . . . . 11 | |
22 | 21 | adantl 275 | . . . . . . . . . 10 |
23 | 7 | zred 9334 | . . . . . . . . . . 11 |
24 | 9 | nnrpd 9651 | . . . . . . . . . . 11 |
25 | 13 | zred 9334 | . . . . . . . . . . 11 |
26 | 14 | nnrpd 9651 | . . . . . . . . . . 11 |
27 | 23, 24, 25, 26 | lt2mul2divd 9722 | . . . . . . . . . 10 |
28 | 20, 22, 27 | 3bitr4rd 220 | . . . . . . . . 9 |
29 | simpr 109 | . . . . . . . . . . 11 | |
30 | 29, 19 | eqeq12d 2185 | . . . . . . . . . 10 |
31 | 7 | zcnd 9335 | . . . . . . . . . . 11 |
32 | 13 | zcnd 9335 | . . . . . . . . . . 11 |
33 | 14 | nncnd 8892 | . . . . . . . . . . . 12 |
34 | 14 | nnap0d 8924 | . . . . . . . . . . . 12 # |
35 | 33, 34 | jca 304 | . . . . . . . . . . 11 # |
36 | 9 | nncnd 8892 | . . . . . . . . . . . 12 |
37 | 9 | nnap0d 8924 | . . . . . . . . . . . 12 # |
38 | 36, 37 | jca 304 | . . . . . . . . . . 11 # |
39 | divmuleqap 8634 | . . . . . . . . . . 11 # # | |
40 | 31, 32, 35, 38, 39 | syl22anc 1234 | . . . . . . . . . 10 |
41 | 30, 40 | bitr2d 188 | . . . . . . . . 9 |
42 | 25, 26, 23, 24 | lt2mul2divd 9722 | . . . . . . . . . 10 |
43 | 19, 29 | breq12d 4002 | . . . . . . . . . 10 |
44 | 42, 43 | bitr4d 190 | . . . . . . . . 9 |
45 | 28, 41, 44 | 3orbi123d 1306 | . . . . . . . 8 |
46 | 18, 45 | mpbid 146 | . . . . . . 7 |
47 | 46 | ex 114 | . . . . . 6 |
48 | 47 | rexlimdvva 2595 | . . . . 5 |
49 | 6, 48 | mpd 13 | . . . 4 |
50 | 49 | ex 114 | . . 3 |
51 | 50 | rexlimdvva 2595 | . 2 |
52 | 3, 51 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3o 972 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 cmul 7779 clt 7954 # cap 8500 cdiv 8589 cn 8878 cz 9212 cq 9578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-q 9579 df-rp 9611 |
This theorem is referenced by: qletric 10200 qlelttric 10201 qltnle 10202 qdceq 10203 fimaxq 10762 |
Copyright terms: Public domain | W3C validator |