Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qtri3or | Unicode version |
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
Ref | Expression |
---|---|
qtri3or |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9560 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | adantl 275 | . 2 |
4 | elq 9560 | . . . . . . 7 | |
5 | 4 | biimpi 119 | . . . . . 6 |
6 | 5 | ad3antrrr 484 | . . . . 5 |
7 | simplrl 525 | . . . . . . . . . 10 | |
8 | simplrr 526 | . . . . . . . . . . . 12 | |
9 | 8 | ad2antrr 480 | . . . . . . . . . . 11 |
10 | 9 | nnzd 9312 | . . . . . . . . . 10 |
11 | 7, 10 | zmulcld 9319 | . . . . . . . . 9 |
12 | simplrl 525 | . . . . . . . . . . 11 | |
13 | 12 | ad2antrr 480 | . . . . . . . . . 10 |
14 | simplrr 526 | . . . . . . . . . . 11 | |
15 | 14 | nnzd 9312 | . . . . . . . . . 10 |
16 | 13, 15 | zmulcld 9319 | . . . . . . . . 9 |
17 | ztri3or 9234 | . . . . . . . . 9 | |
18 | 11, 16, 17 | syl2anc 409 | . . . . . . . 8 |
19 | simpllr 524 | . . . . . . . . . . 11 | |
20 | 19 | breq2d 3994 | . . . . . . . . . 10 |
21 | breq1 3985 | . . . . . . . . . . 11 | |
22 | 21 | adantl 275 | . . . . . . . . . 10 |
23 | 7 | zred 9313 | . . . . . . . . . . 11 |
24 | 9 | nnrpd 9630 | . . . . . . . . . . 11 |
25 | 13 | zred 9313 | . . . . . . . . . . 11 |
26 | 14 | nnrpd 9630 | . . . . . . . . . . 11 |
27 | 23, 24, 25, 26 | lt2mul2divd 9701 | . . . . . . . . . 10 |
28 | 20, 22, 27 | 3bitr4rd 220 | . . . . . . . . 9 |
29 | simpr 109 | . . . . . . . . . . 11 | |
30 | 29, 19 | eqeq12d 2180 | . . . . . . . . . 10 |
31 | 7 | zcnd 9314 | . . . . . . . . . . 11 |
32 | 13 | zcnd 9314 | . . . . . . . . . . 11 |
33 | 14 | nncnd 8871 | . . . . . . . . . . . 12 |
34 | 14 | nnap0d 8903 | . . . . . . . . . . . 12 # |
35 | 33, 34 | jca 304 | . . . . . . . . . . 11 # |
36 | 9 | nncnd 8871 | . . . . . . . . . . . 12 |
37 | 9 | nnap0d 8903 | . . . . . . . . . . . 12 # |
38 | 36, 37 | jca 304 | . . . . . . . . . . 11 # |
39 | divmuleqap 8613 | . . . . . . . . . . 11 # # | |
40 | 31, 32, 35, 38, 39 | syl22anc 1229 | . . . . . . . . . 10 |
41 | 30, 40 | bitr2d 188 | . . . . . . . . 9 |
42 | 25, 26, 23, 24 | lt2mul2divd 9701 | . . . . . . . . . 10 |
43 | 19, 29 | breq12d 3995 | . . . . . . . . . 10 |
44 | 42, 43 | bitr4d 190 | . . . . . . . . 9 |
45 | 28, 41, 44 | 3orbi123d 1301 | . . . . . . . 8 |
46 | 18, 45 | mpbid 146 | . . . . . . 7 |
47 | 46 | ex 114 | . . . . . 6 |
48 | 47 | rexlimdvva 2591 | . . . . 5 |
49 | 6, 48 | mpd 13 | . . . 4 |
50 | 49 | ex 114 | . . 3 |
51 | 50 | rexlimdvva 2591 | . 2 |
52 | 3, 51 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3o 967 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 cmul 7758 clt 7933 # cap 8479 cdiv 8568 cn 8857 cz 9191 cq 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-q 9558 df-rp 9590 |
This theorem is referenced by: qletric 10179 qlelttric 10180 qltnle 10181 qdceq 10182 fimaxq 10740 |
Copyright terms: Public domain | W3C validator |