| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qtri3or | Unicode version | ||
| Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.) |
| Ref | Expression |
|---|---|
| qtri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9817 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | elq 9817 |
. . . . . . 7
| |
| 5 | 4 | biimpi 120 |
. . . . . 6
|
| 6 | 5 | ad3antrrr 492 |
. . . . 5
|
| 7 | simplrl 535 |
. . . . . . . . . 10
| |
| 8 | simplrr 536 |
. . . . . . . . . . . 12
| |
| 9 | 8 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 10 | 9 | nnzd 9568 |
. . . . . . . . . 10
|
| 11 | 7, 10 | zmulcld 9575 |
. . . . . . . . 9
|
| 12 | simplrl 535 |
. . . . . . . . . . 11
| |
| 13 | 12 | ad2antrr 488 |
. . . . . . . . . 10
|
| 14 | simplrr 536 |
. . . . . . . . . . 11
| |
| 15 | 14 | nnzd 9568 |
. . . . . . . . . 10
|
| 16 | 13, 15 | zmulcld 9575 |
. . . . . . . . 9
|
| 17 | ztri3or 9489 |
. . . . . . . . 9
| |
| 18 | 11, 16, 17 | syl2anc 411 |
. . . . . . . 8
|
| 19 | simpllr 534 |
. . . . . . . . . . 11
| |
| 20 | 19 | breq2d 4095 |
. . . . . . . . . 10
|
| 21 | breq1 4086 |
. . . . . . . . . . 11
| |
| 22 | 21 | adantl 277 |
. . . . . . . . . 10
|
| 23 | 7 | zred 9569 |
. . . . . . . . . . 11
|
| 24 | 9 | nnrpd 9890 |
. . . . . . . . . . 11
|
| 25 | 13 | zred 9569 |
. . . . . . . . . . 11
|
| 26 | 14 | nnrpd 9890 |
. . . . . . . . . . 11
|
| 27 | 23, 24, 25, 26 | lt2mul2divd 9961 |
. . . . . . . . . 10
|
| 28 | 20, 22, 27 | 3bitr4rd 221 |
. . . . . . . . 9
|
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 29, 19 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 31 | 7 | zcnd 9570 |
. . . . . . . . . . 11
|
| 32 | 13 | zcnd 9570 |
. . . . . . . . . . 11
|
| 33 | 14 | nncnd 9124 |
. . . . . . . . . . . 12
|
| 34 | 14 | nnap0d 9156 |
. . . . . . . . . . . 12
|
| 35 | 33, 34 | jca 306 |
. . . . . . . . . . 11
|
| 36 | 9 | nncnd 9124 |
. . . . . . . . . . . 12
|
| 37 | 9 | nnap0d 9156 |
. . . . . . . . . . . 12
|
| 38 | 36, 37 | jca 306 |
. . . . . . . . . . 11
|
| 39 | divmuleqap 8864 |
. . . . . . . . . . 11
| |
| 40 | 31, 32, 35, 38, 39 | syl22anc 1272 |
. . . . . . . . . 10
|
| 41 | 30, 40 | bitr2d 189 |
. . . . . . . . 9
|
| 42 | 25, 26, 23, 24 | lt2mul2divd 9961 |
. . . . . . . . . 10
|
| 43 | 19, 29 | breq12d 4096 |
. . . . . . . . . 10
|
| 44 | 42, 43 | bitr4d 191 |
. . . . . . . . 9
|
| 45 | 28, 41, 44 | 3orbi123d 1345 |
. . . . . . . 8
|
| 46 | 18, 45 | mpbid 147 |
. . . . . . 7
|
| 47 | 46 | ex 115 |
. . . . . 6
|
| 48 | 47 | rexlimdvva 2656 |
. . . . 5
|
| 49 | 6, 48 | mpd 13 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | rexlimdvva 2656 |
. 2
|
| 52 | 3, 51 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-n0 9370 df-z 9447 df-q 9815 df-rp 9850 |
| This theorem is referenced by: qletric 10461 qlelttric 10462 qltnle 10463 qdceq 10464 qdclt 10465 fimaxq 11049 |
| Copyright terms: Public domain | W3C validator |