ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtri3or Unicode version

Theorem qtri3or 10050
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qtri3or  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )

Proof of Theorem qtri3or
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9440 . . . 4  |-  ( N  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w ) )
21biimpi 119 . . 3  |-  ( N  e.  QQ  ->  E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w ) )
32adantl 275 . 2  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w ) )
4 elq 9440 . . . . . . 7  |-  ( M  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  /  y ) )
54biimpi 119 . . . . . 6  |-  ( M  e.  QQ  ->  E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  /  y ) )
65ad3antrrr 484 . . . . 5  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  /  y ) )
7 simplrl 525 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  x  e.  ZZ )
8 simplrr 526 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  w  e.  NN )
98ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  NN )
109nnzd 9195 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  ZZ )
117, 10zmulcld 9202 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
x  x.  w )  e.  ZZ )
12 simplrl 525 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  z  e.  ZZ )
1312ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  z  e.  ZZ )
14 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  NN )
1514nnzd 9195 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  ZZ )
1613, 15zmulcld 9202 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
z  x.  y )  e.  ZZ )
17 ztri3or 9120 . . . . . . . . 9  |-  ( ( ( x  x.  w
)  e.  ZZ  /\  ( z  x.  y
)  e.  ZZ )  ->  ( ( x  x.  w )  < 
( z  x.  y
)  \/  ( x  x.  w )  =  ( z  x.  y
)  \/  ( z  x.  y )  < 
( x  x.  w
) ) )
1811, 16, 17syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  <  ( z  x.  y )  \/  (
x  x.  w )  =  ( z  x.  y )  \/  (
z  x.  y )  <  ( x  x.  w ) ) )
19 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  N  =  ( z  /  w ) )
2019breq2d 3948 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  /  y
)  <  N  <->  ( x  /  y )  < 
( z  /  w
) ) )
21 breq1 3939 . . . . . . . . . . 11  |-  ( M  =  ( x  / 
y )  ->  ( M  <  N  <->  ( x  /  y )  < 
N ) )
2221adantl 275 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( M  <  N  <->  ( x  /  y )  < 
N ) )
237zred 9196 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  x  e.  RR )
249nnrpd 9510 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  RR+ )
2513zred 9196 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  z  e.  RR )
2614nnrpd 9510 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  RR+ )
2723, 24, 25, 26lt2mul2divd 9581 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  <  ( z  x.  y )  <->  ( x  /  y )  < 
( z  /  w
) ) )
2820, 22, 273bitr4rd 220 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  <  ( z  x.  y )  <->  M  <  N ) )
29 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  M  =  ( x  / 
y ) )
3029, 19eqeq12d 2155 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( M  =  N  <->  ( x  /  y )  =  ( z  /  w
) ) )
317zcnd 9197 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  x  e.  CC )
3213zcnd 9197 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  z  e.  CC )
3314nncnd 8757 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y  e.  CC )
3414nnap0d 8789 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  y #  0 )
3533, 34jca 304 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
y  e.  CC  /\  y #  0 ) )
369nncnd 8757 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w  e.  CC )
379nnap0d 8789 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  w #  0 )
3836, 37jca 304 . . . . . . . . . . 11  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
w  e.  CC  /\  w #  0 ) )
39 divmuleqap 8500 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y #  0 )  /\  (
w  e.  CC  /\  w #  0 ) ) )  ->  ( ( x  /  y )  =  ( z  /  w
)  <->  ( x  x.  w )  =  ( z  x.  y ) ) )
4031, 32, 35, 38, 39syl22anc 1218 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  /  y
)  =  ( z  /  w )  <->  ( x  x.  w )  =  ( z  x.  y ) ) )
4130, 40bitr2d 188 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( x  x.  w
)  =  ( z  x.  y )  <->  M  =  N ) )
4225, 26, 23, 24lt2mul2divd 9581 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( z  x.  y
)  <  ( x  x.  w )  <->  ( z  /  w )  <  (
x  /  y ) ) )
4319, 29breq12d 3949 . . . . . . . . . 10  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( N  <  M  <->  ( z  /  w )  <  (
x  /  y ) ) )
4442, 43bitr4d 190 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( z  x.  y
)  <  ( x  x.  w )  <->  N  <  M ) )
4528, 41, 443orbi123d 1290 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  (
( ( x  x.  w )  <  (
z  x.  y )  \/  ( x  x.  w )  =  ( z  x.  y )  \/  ( z  x.  y )  <  (
x  x.  w ) )  <->  ( M  < 
N  \/  M  =  N  \/  N  < 
M ) ) )
4618, 45mpbid 146 . . . . . . 7  |-  ( ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  /\  M  =  ( x  /  y
) )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
4746ex 114 . . . . . 6  |-  ( ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  /\  (
x  e.  ZZ  /\  y  e.  NN )
)  ->  ( M  =  ( x  / 
y )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) ) )
4847rexlimdvva 2560 . . . . 5  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  ( E. x  e.  ZZ  E. y  e.  NN  M  =  ( x  / 
y )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) ) )
496, 48mpd 13 . . . 4  |-  ( ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  N  =  ( z  /  w
) )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
5049ex 114 . . 3  |-  ( ( ( M  e.  QQ  /\  N  e.  QQ )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( N  =  ( z  /  w )  ->  ( M  < 
N  \/  M  =  N  \/  N  < 
M ) ) )
5150rexlimdvva 2560 . 2  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( E. z  e.  ZZ  E. w  e.  NN  N  =  ( z  /  w )  ->  ( M  < 
N  \/  M  =  N  \/  N  < 
M ) ) )
523, 51mpd 13 1  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 962    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3936  (class class class)co 5781   CCcc 7641   0cc0 7643    x. cmul 7648    < clt 7823   # cap 8366    / cdiv 8455   NNcn 8743   ZZcz 9077   QQcq 9437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-id 4222  df-po 4225  df-iso 4226  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-n0 9001  df-z 9078  df-q 9438  df-rp 9470
This theorem is referenced by:  qletric  10051  qlelttric  10052  qltnle  10053  qdceq  10054  fimaxq  10604
  Copyright terms: Public domain W3C validator