Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpo Unicode version

Theorem trilpo 15687
Description: Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 15685 (which means the sequence contains a zero), trilpolemeq1 15684 (which means the sequence is all ones), and trilpolemgt1 15683 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 15673) or that the real numbers are a discrete field (see trirec0 15688).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10330 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

Assertion
Ref Expression
trilpo  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Distinct variable group:    x, y

Proof of Theorem trilpo
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6729 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 277 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5930 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5938 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5558 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5940 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11526 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 15681 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR )
9 1red 8041 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 109 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
11 breq1 4036 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  <  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y )
)
12 eqeq1 2203 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  y ) )
13 breq2 4037 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( y  <  x  <->  y  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1411, 12, 133orbi123d 1322 . . . . . . 7  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  <  y  \/  x  =  y  \/  y  <  x )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
15 breq2 4037 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1
) )
16 eqeq2 2206 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  1 ) )
17 breq1 4036 . . . . . . . 8  |-  ( y  =  1  ->  (
y  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <->  1  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1815, 16, 173orbi123d 1322 . . . . . . 7  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  1  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
1914, 18rspc2va 2882 . . . . . 6  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
208, 9, 10, 19syl21anc 1248 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
212, 7, 20trilpolemres 15686 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2221ralrimiva 2570 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
23 nnex 8996 . . . 4  |-  NN  e.  _V
24 isomninn 15675 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) ) )
2523, 24ax-mp 5 . . 3  |-  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2622, 25sylibr 134 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  NN  e. Omni )
27 nnenom 10526 . . 3  |-  NN  ~~  om
28 enomni 7205 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Omni 
<->  om  e. Omni ) )
2927, 28ax-mp 5 . 2  |-  ( NN  e. Omni 
<->  om  e. Omni )
3026, 29sylib 122 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   {cpr 3623   class class class wbr 4033   omcom 4626   -->wf 5254   ` cfv 5258  (class class class)co 5922    ^m cmap 6707    ~~ cen 6797  Omnicomni 7200   RRcr 7878   0cc0 7879   1c1 7880    x. cmul 7884    < clt 8061    / cdiv 8699   NNcn 8990   2c2 9041   ^cexp 10630   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-map 6709  df-en 6800  df-dom 6801  df-fin 6802  df-omni 7201  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator