Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpo Unicode version

Theorem trilpo 14932
Description: Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 14930 (which means the sequence contains a zero), trilpolemeq1 14929 (which means the sequence is all ones), and trilpolemgt1 14928 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 14918) or that the real numbers are a discrete field (see trirec0 14933).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10246 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

Assertion
Ref Expression
trilpo  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Distinct variable group:    x, y

Proof of Theorem trilpo
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6673 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 277 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5886 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5894 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5517 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5896 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11372 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 14926 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR )
9 1red 7975 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 109 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
11 breq1 4008 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  <  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y )
)
12 eqeq1 2184 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  y ) )
13 breq2 4009 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( y  <  x  <->  y  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1411, 12, 133orbi123d 1311 . . . . . . 7  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  <  y  \/  x  =  y  \/  y  <  x )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
15 breq2 4009 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1
) )
16 eqeq2 2187 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  1 ) )
17 breq1 4008 . . . . . . . 8  |-  ( y  =  1  ->  (
y  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <->  1  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1815, 16, 173orbi123d 1311 . . . . . . 7  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  1  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
1914, 18rspc2va 2857 . . . . . 6  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
208, 9, 10, 19syl21anc 1237 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
212, 7, 20trilpolemres 14931 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2221ralrimiva 2550 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
23 nnex 8928 . . . 4  |-  NN  e.  _V
24 isomninn 14920 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) ) )
2523, 24ax-mp 5 . . 3  |-  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2622, 25sylibr 134 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  NN  e. Omni )
27 nnenom 10437 . . 3  |-  NN  ~~  om
28 enomni 7140 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Omni 
<->  om  e. Omni ) )
2927, 28ax-mp 5 . 2  |-  ( NN  e. Omni 
<->  om  e. Omni )
3026, 29sylib 122 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2739   {cpr 3595   class class class wbr 4005   omcom 4591   -->wf 5214   ` cfv 5218  (class class class)co 5878    ^m cmap 6651    ~~ cen 6741  Omnicomni 7135   RRcr 7813   0cc0 7814   1c1 7815    x. cmul 7819    < clt 7995    / cdiv 8632   NNcn 8922   2c2 8973   ^cexp 10522   sum_csu 11364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932  ax-arch 7933  ax-caucvg 7934
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-frec 6395  df-1o 6420  df-2o 6421  df-oadd 6424  df-er 6538  df-map 6653  df-en 6744  df-dom 6745  df-fin 6746  df-omni 7136  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-n0 9180  df-z 9257  df-uz 9532  df-q 9623  df-rp 9657  df-ico 9897  df-fz 10012  df-fzo 10146  df-seqfrec 10449  df-exp 10523  df-ihash 10759  df-cj 10854  df-re 10855  df-im 10856  df-rsqrt 11010  df-abs 11011  df-clim 11290  df-sumdc 11365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator