Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpo Unicode version

Theorem trilpo 15737
Description: Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 15735 (which means the sequence contains a zero), trilpolemeq1 15734 (which means the sequence is all ones), and trilpolemgt1 15733 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 15723) or that the real numbers are a discrete field (see trirec0 15738).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10335 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

Assertion
Ref Expression
trilpo  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Distinct variable group:    x, y

Proof of Theorem trilpo
Dummy variables  f  i  j  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6733 . . . . . 6  |-  ( f  e.  ( { 0 ,  1 }  ^m  NN )  ->  f : NN --> { 0 ,  1 } )
21adantl 277 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  f : NN --> { 0 ,  1 } )
3 oveq2 5933 . . . . . . . 8  |-  ( i  =  j  ->  (
2 ^ i )  =  ( 2 ^ j ) )
43oveq2d 5941 . . . . . . 7  |-  ( i  =  j  ->  (
1  /  ( 2 ^ i ) )  =  ( 1  / 
( 2 ^ j
) ) )
5 fveq2 5561 . . . . . . 7  |-  ( i  =  j  ->  (
f `  i )  =  ( f `  j ) )
64, 5oveq12d 5943 . . . . . 6  |-  ( i  =  j  ->  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  ( ( 1  /  ( 2 ^ j ) )  x.  ( f `  j
) ) )
76cbvsumv 11531 . . . . 5  |-  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  sum_ j  e.  NN  (
( 1  /  (
2 ^ j ) )  x.  ( f `
 j ) )
82, 7trilpolemcl 15731 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR )
9 1red 8046 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  1  e.  RR )
10 simpl 109 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
11 breq1 4037 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  <  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y )
)
12 eqeq1 2203 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( x  =  y  <->  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  y ) )
13 breq2 4038 . . . . . . . 8  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( y  <  x  <->  y  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1411, 12, 133orbi123d 1322 . . . . . . 7  |-  ( x  =  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  ->  ( (
x  <  y  \/  x  =  y  \/  y  <  x )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
15 breq2 4038 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1
) )
16 eqeq2 2206 . . . . . . . 8  |-  ( y  =  1  ->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  <->  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  =  1 ) )
17 breq1 4037 . . . . . . . 8  |-  ( y  =  1  ->  (
y  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <->  1  <  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) ) ) )
1815, 16, 173orbi123d 1322 . . . . . . 7  |-  ( y  =  1  ->  (
( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  <  y  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  y  \/  y  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) )  <->  ( sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  <  1  \/  sum_ i  e.  NN  (
( 1  /  (
2 ^ i ) )  x.  ( f `
 i ) )  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
) ) ) )
1914, 18rspc2va 2882 . . . . . 6  |-  ( ( ( sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  e.  RR  /\  1  e.  RR )  /\  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
208, 9, 10, 19syl21anc 1248 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) )  <  1  \/  sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  (
f `  i )
)  =  1  \/  1  <  sum_ i  e.  NN  ( ( 1  /  ( 2 ^ i ) )  x.  ( f `  i
) ) ) )
212, 7, 20trilpolemres 15736 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  f  e.  ( {
0 ,  1 }  ^m  NN ) )  ->  ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2221ralrimiva 2570 . . 3  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
23 nnex 9001 . . . 4  |-  NN  e.  _V
24 isomninn 15725 . . . 4  |-  ( NN  e.  _V  ->  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) ) )
2523, 24ax-mp 5 . . 3  |-  ( NN  e. Omni 
<-> 
A. f  e.  ( { 0 ,  1 }  ^m  NN ) ( E. z  e.  NN  ( f `  z )  =  0  \/  A. z  e.  NN  ( f `  z )  =  1 ) )
2622, 25sylibr 134 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  NN  e. Omni )
27 nnenom 10531 . . 3  |-  NN  ~~  om
28 enomni 7209 . . 3  |-  ( NN 
~~  om  ->  ( NN  e. Omni 
<->  om  e. Omni ) )
2927, 28ax-mp 5 . 2  |-  ( NN  e. Omni 
<->  om  e. Omni )
3026, 29sylib 122 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  om  e. Omni )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   {cpr 3624   class class class wbr 4034   omcom 4627   -->wf 5255   ` cfv 5259  (class class class)co 5925    ^m cmap 6711    ~~ cen 6801  Omnicomni 7204   RRcr 7883   0cc0 7884   1c1 7885    x. cmul 7889    < clt 8066    / cdiv 8704   NNcn 8995   2c2 9046   ^cexp 10635   sum_csu 11523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7975  ax-resscn 7976  ax-1cn 7977  ax-1re 7978  ax-icn 7979  ax-addcl 7980  ax-addrcl 7981  ax-mulcl 7982  ax-mulrcl 7983  ax-addcom 7984  ax-mulcom 7985  ax-addass 7986  ax-mulass 7987  ax-distr 7988  ax-i2m1 7989  ax-0lt1 7990  ax-1rid 7991  ax-0id 7992  ax-rnegex 7993  ax-precex 7994  ax-cnre 7995  ax-pre-ltirr 7996  ax-pre-ltwlin 7997  ax-pre-lttrn 7998  ax-pre-apti 7999  ax-pre-ltadd 8000  ax-pre-mulgt0 8001  ax-pre-mulext 8002  ax-arch 8003  ax-caucvg 8004
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6202  df-2nd 6203  df-recs 6367  df-irdg 6432  df-frec 6453  df-1o 6478  df-2o 6479  df-oadd 6482  df-er 6596  df-map 6713  df-en 6804  df-dom 6805  df-fin 6806  df-omni 7205  df-pnf 8068  df-mnf 8069  df-xr 8070  df-ltxr 8071  df-le 8072  df-sub 8204  df-neg 8205  df-reap 8607  df-ap 8614  df-div 8705  df-inn 8996  df-2 9054  df-3 9055  df-4 9056  df-n0 9255  df-z 9332  df-uz 9607  df-q 9699  df-rp 9734  df-ico 9974  df-fz 10089  df-fzo 10223  df-seqfrec 10545  df-exp 10636  df-ihash 10873  df-cj 11012  df-re 11013  df-im 11014  df-rsqrt 11168  df-abs 11169  df-clim 11449  df-sumdc 11524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator