Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  reap0 Unicode version

Theorem reap0 15997
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
Assertion
Ref Expression
reap0  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Distinct variable group:    x, y, z

Proof of Theorem reap0
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
2 simpr 110 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  z  e.  RR )
3 0re 8072 . . . . . 6  |-  0  e.  RR
4 breq1 4047 . . . . . . . 8  |-  ( x  =  z  ->  (
x  <  y  <->  z  <  y ) )
5 equequ1 1735 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
6 breq2 4048 . . . . . . . 8  |-  ( x  =  z  ->  (
y  <  x  <->  y  <  z ) )
74, 5, 63orbi123d 1324 . . . . . . 7  |-  ( x  =  z  ->  (
( x  <  y  \/  x  =  y  \/  y  <  x )  <-> 
( z  <  y  \/  z  =  y  \/  y  <  z ) ) )
8 breq2 4048 . . . . . . . 8  |-  ( y  =  0  ->  (
z  <  y  <->  z  <  0 ) )
9 eqeq2 2215 . . . . . . . 8  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
10 breq1 4047 . . . . . . . 8  |-  ( y  =  0  ->  (
y  <  z  <->  0  <  z ) )
118, 9, 103orbi123d 1324 . . . . . . 7  |-  ( y  =  0  ->  (
( z  <  y  \/  z  =  y  \/  y  <  z )  <-> 
( z  <  0  \/  z  =  0  \/  0  <  z ) ) )
127, 11rspc2v 2890 . . . . . 6  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
132, 3, 12sylancl 413 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
141, 13mpd 13 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( z  <  0  \/  z  =  0  \/  0  <  z ) )
15 triap 15968 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
162, 3, 15sylancl 413 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
1714, 16mpbid 147 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  -> DECID  z #  0 )
1817ralrimiva 2579 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. z  e.  RR DECID  z #  0 )
19 breq1 4047 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z #  0  <->  ( x  -  y ) #  0 ) )
2019dcbid 840 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (DECID  z #  0 
<-> DECID  ( x  -  y ) #  0 ) )
21 simpl 109 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  RR DECID  z #  0 )
22 resubcl 8336 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
2322adantl 277 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  -  y
)  e.  RR )
2420, 21, 23rspcdva 2882 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  (
x  -  y ) #  0 )
25 simprl 529 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
2625recnd 8101 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
27 simprr 531 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
2827recnd 8101 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  CC )
29 subap0 8716 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y ) #  0  <->  x #  y
) )
3026, 28, 29syl2anc 411 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  -  y ) #  0  <->  x #  y
) )
3130dcbid 840 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
(DECID  ( x  -  y
) #  0  <-> DECID  x #  y )
)
3224, 31mpbid 147 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  x #  y )
33 triap 15968 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3433adantl 277 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3532, 34mpbird 167 . . 3  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  <  y  \/  x  =  y  \/  y  <  x ) )
3635ralrimivva 2588 . 2  |-  ( A. z  e.  RR DECID  z #  0  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
3718, 36impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2176   A.wral 2484   class class class wbr 4044  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925    < clt 8107    - cmin 8243   # cap 8654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655
This theorem is referenced by:  dcapnconstALT  16001
  Copyright terms: Public domain W3C validator