Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  reap0 Unicode version

Theorem reap0 16199
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
Assertion
Ref Expression
reap0  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Distinct variable group:    x, y, z

Proof of Theorem reap0
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
2 simpr 110 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  z  e.  RR )
3 0re 8107 . . . . . 6  |-  0  e.  RR
4 breq1 4062 . . . . . . . 8  |-  ( x  =  z  ->  (
x  <  y  <->  z  <  y ) )
5 equequ1 1736 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
6 breq2 4063 . . . . . . . 8  |-  ( x  =  z  ->  (
y  <  x  <->  y  <  z ) )
74, 5, 63orbi123d 1324 . . . . . . 7  |-  ( x  =  z  ->  (
( x  <  y  \/  x  =  y  \/  y  <  x )  <-> 
( z  <  y  \/  z  =  y  \/  y  <  z ) ) )
8 breq2 4063 . . . . . . . 8  |-  ( y  =  0  ->  (
z  <  y  <->  z  <  0 ) )
9 eqeq2 2217 . . . . . . . 8  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
10 breq1 4062 . . . . . . . 8  |-  ( y  =  0  ->  (
y  <  z  <->  0  <  z ) )
118, 9, 103orbi123d 1324 . . . . . . 7  |-  ( y  =  0  ->  (
( z  <  y  \/  z  =  y  \/  y  <  z )  <-> 
( z  <  0  \/  z  =  0  \/  0  <  z ) ) )
127, 11rspc2v 2897 . . . . . 6  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
132, 3, 12sylancl 413 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
141, 13mpd 13 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( z  <  0  \/  z  =  0  \/  0  <  z ) )
15 triap 16170 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
162, 3, 15sylancl 413 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
1714, 16mpbid 147 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  -> DECID  z #  0 )
1817ralrimiva 2581 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. z  e.  RR DECID  z #  0 )
19 breq1 4062 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z #  0  <->  ( x  -  y ) #  0 ) )
2019dcbid 840 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (DECID  z #  0 
<-> DECID  ( x  -  y ) #  0 ) )
21 simpl 109 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  RR DECID  z #  0 )
22 resubcl 8371 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
2322adantl 277 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  -  y
)  e.  RR )
2420, 21, 23rspcdva 2889 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  (
x  -  y ) #  0 )
25 simprl 529 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
2625recnd 8136 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
27 simprr 531 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
2827recnd 8136 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  CC )
29 subap0 8751 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y ) #  0  <->  x #  y
) )
3026, 28, 29syl2anc 411 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  -  y ) #  0  <->  x #  y
) )
3130dcbid 840 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
(DECID  ( x  -  y
) #  0  <-> DECID  x #  y )
)
3224, 31mpbid 147 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  x #  y )
33 triap 16170 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3433adantl 277 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3532, 34mpbird 167 . . 3  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  <  y  \/  x  =  y  \/  y  <  x ) )
3635ralrimivva 2590 . 2  |-  ( A. z  e.  RR DECID  z #  0  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
3718, 36impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2178   A.wral 2486   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    < clt 8142    - cmin 8278   # cap 8689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690
This theorem is referenced by:  dcapnconstALT  16203
  Copyright terms: Public domain W3C validator