Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > reap0 | Unicode version |
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.) |
Ref | Expression |
---|---|
reap0 | DECID # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | simpr 109 | . . . . . 6 | |
3 | 0re 7920 | . . . . . 6 | |
4 | breq1 3992 | . . . . . . . 8 | |
5 | equequ1 1705 | . . . . . . . 8 | |
6 | breq2 3993 | . . . . . . . 8 | |
7 | 4, 5, 6 | 3orbi123d 1306 | . . . . . . 7 |
8 | breq2 3993 | . . . . . . . 8 | |
9 | eqeq2 2180 | . . . . . . . 8 | |
10 | breq1 3992 | . . . . . . . 8 | |
11 | 8, 9, 10 | 3orbi123d 1306 | . . . . . . 7 |
12 | 7, 11 | rspc2v 2847 | . . . . . 6 |
13 | 2, 3, 12 | sylancl 411 | . . . . 5 |
14 | 1, 13 | mpd 13 | . . . 4 |
15 | triap 14061 | . . . . 5 DECID # | |
16 | 2, 3, 15 | sylancl 411 | . . . 4 DECID # |
17 | 14, 16 | mpbid 146 | . . 3 DECID # |
18 | 17 | ralrimiva 2543 | . 2 DECID # |
19 | breq1 3992 | . . . . . . 7 # # | |
20 | 19 | dcbid 833 | . . . . . 6 DECID # DECID # |
21 | simpl 108 | . . . . . 6 DECID # DECID # | |
22 | resubcl 8183 | . . . . . . 7 | |
23 | 22 | adantl 275 | . . . . . 6 DECID # |
24 | 20, 21, 23 | rspcdva 2839 | . . . . 5 DECID # DECID # |
25 | simprl 526 | . . . . . . . 8 DECID # | |
26 | 25 | recnd 7948 | . . . . . . 7 DECID # |
27 | simprr 527 | . . . . . . . 8 DECID # | |
28 | 27 | recnd 7948 | . . . . . . 7 DECID # |
29 | subap0 8562 | . . . . . . 7 # # | |
30 | 26, 28, 29 | syl2anc 409 | . . . . . 6 DECID # # # |
31 | 30 | dcbid 833 | . . . . 5 DECID # DECID # DECID # |
32 | 24, 31 | mpbid 146 | . . . 4 DECID # DECID # |
33 | triap 14061 | . . . . 5 DECID # | |
34 | 33 | adantl 275 | . . . 4 DECID # DECID # |
35 | 32, 34 | mpbird 166 | . . 3 DECID # |
36 | 35 | ralrimivva 2552 | . 2 DECID # |
37 | 18, 36 | impbii 125 | 1 DECID # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 clt 7954 cmin 8090 # cap 8500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 |
This theorem is referenced by: dcapnconstALT 14093 |
Copyright terms: Public domain | W3C validator |