Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  reap0 Unicode version

Theorem reap0 15789
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
Assertion
Ref Expression
reap0  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Distinct variable group:    x, y, z

Proof of Theorem reap0
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
2 simpr 110 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  z  e.  RR )
3 0re 8043 . . . . . 6  |-  0  e.  RR
4 breq1 4037 . . . . . . . 8  |-  ( x  =  z  ->  (
x  <  y  <->  z  <  y ) )
5 equequ1 1726 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
6 breq2 4038 . . . . . . . 8  |-  ( x  =  z  ->  (
y  <  x  <->  y  <  z ) )
74, 5, 63orbi123d 1322 . . . . . . 7  |-  ( x  =  z  ->  (
( x  <  y  \/  x  =  y  \/  y  <  x )  <-> 
( z  <  y  \/  z  =  y  \/  y  <  z ) ) )
8 breq2 4038 . . . . . . . 8  |-  ( y  =  0  ->  (
z  <  y  <->  z  <  0 ) )
9 eqeq2 2206 . . . . . . . 8  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
10 breq1 4037 . . . . . . . 8  |-  ( y  =  0  ->  (
y  <  z  <->  0  <  z ) )
118, 9, 103orbi123d 1322 . . . . . . 7  |-  ( y  =  0  ->  (
( z  <  y  \/  z  =  y  \/  y  <  z )  <-> 
( z  <  0  \/  z  =  0  \/  0  <  z ) ) )
127, 11rspc2v 2881 . . . . . 6  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
132, 3, 12sylancl 413 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
141, 13mpd 13 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( z  <  0  \/  z  =  0  \/  0  <  z ) )
15 triap 15760 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
162, 3, 15sylancl 413 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
1714, 16mpbid 147 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  -> DECID  z #  0 )
1817ralrimiva 2570 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. z  e.  RR DECID  z #  0 )
19 breq1 4037 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z #  0  <->  ( x  -  y ) #  0 ) )
2019dcbid 839 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (DECID  z #  0 
<-> DECID  ( x  -  y ) #  0 ) )
21 simpl 109 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  RR DECID  z #  0 )
22 resubcl 8307 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
2322adantl 277 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  -  y
)  e.  RR )
2420, 21, 23rspcdva 2873 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  (
x  -  y ) #  0 )
25 simprl 529 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
2625recnd 8072 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
27 simprr 531 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
2827recnd 8072 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  CC )
29 subap0 8687 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y ) #  0  <->  x #  y
) )
3026, 28, 29syl2anc 411 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  -  y ) #  0  <->  x #  y
) )
3130dcbid 839 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
(DECID  ( x  -  y
) #  0  <-> DECID  x #  y )
)
3224, 31mpbid 147 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  x #  y )
33 triap 15760 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3433adantl 277 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3532, 34mpbird 167 . . 3  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  <  y  \/  x  =  y  \/  y  <  x ) )
3635ralrimivva 2579 . 2  |-  ( A. z  e.  RR DECID  z #  0  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
3718, 36impbii 126 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    \/ w3o 979    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4034  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    < clt 8078    - cmin 8214   # cap 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626
This theorem is referenced by:  dcapnconstALT  15793
  Copyright terms: Public domain W3C validator