Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  reap0 Unicode version

Theorem reap0 14090
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
Assertion
Ref Expression
reap0  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Distinct variable group:    x, y, z

Proof of Theorem reap0
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
2 simpr 109 . . . . . 6  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  z  e.  RR )
3 0re 7920 . . . . . 6  |-  0  e.  RR
4 breq1 3992 . . . . . . . 8  |-  ( x  =  z  ->  (
x  <  y  <->  z  <  y ) )
5 equequ1 1705 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  y  <->  z  =  y ) )
6 breq2 3993 . . . . . . . 8  |-  ( x  =  z  ->  (
y  <  x  <->  y  <  z ) )
74, 5, 63orbi123d 1306 . . . . . . 7  |-  ( x  =  z  ->  (
( x  <  y  \/  x  =  y  \/  y  <  x )  <-> 
( z  <  y  \/  z  =  y  \/  y  <  z ) ) )
8 breq2 3993 . . . . . . . 8  |-  ( y  =  0  ->  (
z  <  y  <->  z  <  0 ) )
9 eqeq2 2180 . . . . . . . 8  |-  ( y  =  0  ->  (
z  =  y  <->  z  = 
0 ) )
10 breq1 3992 . . . . . . . 8  |-  ( y  =  0  ->  (
y  <  z  <->  0  <  z ) )
118, 9, 103orbi123d 1306 . . . . . . 7  |-  ( y  =  0  ->  (
( z  <  y  \/  z  =  y  \/  y  <  z )  <-> 
( z  <  0  \/  z  =  0  \/  0  <  z ) ) )
127, 11rspc2v 2847 . . . . . 6  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
132, 3, 12sylancl 411 . . . . 5  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  (
z  <  0  \/  z  =  0  \/  0  <  z ) ) )
141, 13mpd 13 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( z  <  0  \/  z  =  0  \/  0  <  z ) )
15 triap 14061 . . . . 5  |-  ( ( z  e.  RR  /\  0  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
162, 3, 15sylancl 411 . . . 4  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  ->  ( ( z  <  0  \/  z  =  0  \/  0  < 
z )  <-> DECID  z #  0 ) )
1714, 16mpbid 146 . . 3  |-  ( ( A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x )  /\  z  e.  RR )  -> DECID  z #  0 )
1817ralrimiva 2543 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  ->  A. z  e.  RR DECID  z #  0 )
19 breq1 3992 . . . . . . 7  |-  ( z  =  ( x  -  y )  ->  (
z #  0  <->  ( x  -  y ) #  0 ) )
2019dcbid 833 . . . . . 6  |-  ( z  =  ( x  -  y )  ->  (DECID  z #  0 
<-> DECID  ( x  -  y ) #  0 ) )
21 simpl 108 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A. z  e.  RR DECID  z #  0 )
22 resubcl 8183 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
2322adantl 275 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  -  y
)  e.  RR )
2420, 21, 23rspcdva 2839 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  (
x  -  y ) #  0 )
25 simprl 526 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
2625recnd 7948 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
27 simprr 527 . . . . . . . 8  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
2827recnd 7948 . . . . . . 7  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  CC )
29 subap0 8562 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y ) #  0  <->  x #  y
) )
3026, 28, 29syl2anc 409 . . . . . 6  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  -  y ) #  0  <->  x #  y
) )
3130dcbid 833 . . . . 5  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
(DECID  ( x  -  y
) #  0  <-> DECID  x #  y )
)
3224, 31mpbid 146 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> DECID  x #  y )
33 triap 14061 . . . . 5  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3433adantl 275 . . . 4  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <-> DECID  x #  y )
)
3532, 34mpbird 166 . . 3  |-  ( ( A. z  e.  RR DECID  z #  0  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  <  y  \/  x  =  y  \/  y  <  x ) )
3635ralrimivva 2552 . 2  |-  ( A. z  e.  RR DECID  z #  0  ->  A. x  e.  RR  A. y  e.  RR  (
x  <  y  \/  x  =  y  \/  y  <  x ) )
3718, 36impbii 125 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. z  e.  RR DECID  z #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    \/ w3o 972    = wceq 1348    e. wcel 2141   A.wral 2448   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774    < clt 7954    - cmin 8090   # cap 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  dcapnconstALT  14093
  Copyright terms: Public domain W3C validator