Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > reap0 | Unicode version |
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.) |
Ref | Expression |
---|---|
reap0 | DECID # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | simpr 109 | . . . . . 6 | |
3 | 0re 7861 | . . . . . 6 | |
4 | breq1 3968 | . . . . . . . 8 | |
5 | equequ1 1692 | . . . . . . . 8 | |
6 | breq2 3969 | . . . . . . . 8 | |
7 | 4, 5, 6 | 3orbi123d 1293 | . . . . . . 7 |
8 | breq2 3969 | . . . . . . . 8 | |
9 | eqeq2 2167 | . . . . . . . 8 | |
10 | breq1 3968 | . . . . . . . 8 | |
11 | 8, 9, 10 | 3orbi123d 1293 | . . . . . . 7 |
12 | 7, 11 | rspc2v 2829 | . . . . . 6 |
13 | 2, 3, 12 | sylancl 410 | . . . . 5 |
14 | 1, 13 | mpd 13 | . . . 4 |
15 | triap 13563 | . . . . 5 DECID # | |
16 | 2, 3, 15 | sylancl 410 | . . . 4 DECID # |
17 | 14, 16 | mpbid 146 | . . 3 DECID # |
18 | 17 | ralrimiva 2530 | . 2 DECID # |
19 | breq1 3968 | . . . . . . 7 # # | |
20 | 19 | dcbid 824 | . . . . . 6 DECID # DECID # |
21 | simpl 108 | . . . . . 6 DECID # DECID # | |
22 | resubcl 8122 | . . . . . . 7 | |
23 | 22 | adantl 275 | . . . . . 6 DECID # |
24 | 20, 21, 23 | rspcdva 2821 | . . . . 5 DECID # DECID # |
25 | simprl 521 | . . . . . . . 8 DECID # | |
26 | 25 | recnd 7889 | . . . . . . 7 DECID # |
27 | simprr 522 | . . . . . . . 8 DECID # | |
28 | 27 | recnd 7889 | . . . . . . 7 DECID # |
29 | subap0 8501 | . . . . . . 7 # # | |
30 | 26, 28, 29 | syl2anc 409 | . . . . . 6 DECID # # # |
31 | 30 | dcbid 824 | . . . . 5 DECID # DECID # DECID # |
32 | 24, 31 | mpbid 146 | . . . 4 DECID # DECID # |
33 | triap 13563 | . . . . 5 DECID # | |
34 | 33 | adantl 275 | . . . 4 DECID # DECID # |
35 | 32, 34 | mpbird 166 | . . 3 DECID # |
36 | 35 | ralrimivva 2539 | . 2 DECID # |
37 | 18, 36 | impbii 125 | 1 DECID # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 820 w3o 962 wceq 1335 wcel 2128 wral 2435 class class class wbr 3965 (class class class)co 5818 cc 7713 cr 7714 cc0 7715 clt 7895 cmin 8029 # cap 8439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-ltxr 7900 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 |
This theorem is referenced by: dcapnconstALT 13595 |
Copyright terms: Public domain | W3C validator |