ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz Unicode version

Theorem elz 9328
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )

Proof of Theorem elz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . 3  |-  ( x  =  N  ->  (
x  =  0  <->  N  =  0 ) )
2 eleq1 2259 . . 3  |-  ( x  =  N  ->  (
x  e.  NN  <->  N  e.  NN ) )
3 negeq 8219 . . . 4  |-  ( x  =  N  ->  -u x  =  -u N )
43eleq1d 2265 . . 3  |-  ( x  =  N  ->  ( -u x  e.  NN  <->  -u N  e.  NN ) )
51, 2, 43orbi123d 1322 . 2  |-  ( x  =  N  ->  (
( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) 
<->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
6 df-z 9327 . 2  |-  ZZ  =  { x  e.  RR  |  ( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) }
75, 6elrab2 2923 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2167   RRcr 7878   0cc0 7879   -ucneg 8198   NNcn 8990   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-neg 8200  df-z 9327
This theorem is referenced by:  nnnegz  9329  zre  9330  elnnz  9336  0z  9337  elnn0z  9339  elznn0nn  9340  elznn0  9341  elznn  9342  znegcl  9357  zaddcl  9366  ztri3or0  9368  zeo  9431  addmodlteq  10490  zabsle1  15240
  Copyright terms: Public domain W3C validator