ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz Unicode version

Theorem elz 9319
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )

Proof of Theorem elz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . 3  |-  ( x  =  N  ->  (
x  =  0  <->  N  =  0 ) )
2 eleq1 2256 . . 3  |-  ( x  =  N  ->  (
x  e.  NN  <->  N  e.  NN ) )
3 negeq 8212 . . . 4  |-  ( x  =  N  ->  -u x  =  -u N )
43eleq1d 2262 . . 3  |-  ( x  =  N  ->  ( -u x  e.  NN  <->  -u N  e.  NN ) )
51, 2, 43orbi123d 1322 . 2  |-  ( x  =  N  ->  (
( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) 
<->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
6 df-z 9318 . 2  |-  ZZ  =  { x  e.  RR  |  ( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) }
75, 6elrab2 2919 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2164   RRcr 7871   0cc0 7872   -ucneg 8191   NNcn 8982   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-neg 8193  df-z 9318
This theorem is referenced by:  nnnegz  9320  zre  9321  elnnz  9327  0z  9328  elnn0z  9330  elznn0nn  9331  elznn0  9332  elznn  9333  znegcl  9348  zaddcl  9357  ztri3or0  9359  zeo  9422  addmodlteq  10469  zabsle1  15115
  Copyright terms: Public domain W3C validator