ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz Unicode version

Theorem elz 9255
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )

Proof of Theorem elz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2184 . . 3  |-  ( x  =  N  ->  (
x  =  0  <->  N  =  0 ) )
2 eleq1 2240 . . 3  |-  ( x  =  N  ->  (
x  e.  NN  <->  N  e.  NN ) )
3 negeq 8150 . . . 4  |-  ( x  =  N  ->  -u x  =  -u N )
43eleq1d 2246 . . 3  |-  ( x  =  N  ->  ( -u x  e.  NN  <->  -u N  e.  NN ) )
51, 2, 43orbi123d 1311 . 2  |-  ( x  =  N  ->  (
( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) 
<->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
6 df-z 9254 . 2  |-  ZZ  =  { x  e.  RR  |  ( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) }
75, 6elrab2 2897 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2148   RRcr 7810   0cc0 7811   -ucneg 8129   NNcn 8919   ZZcz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878  df-neg 8131  df-z 9254
This theorem is referenced by:  nnnegz  9256  zre  9257  elnnz  9263  0z  9264  elnn0z  9266  elznn0nn  9267  elznn0  9268  elznn  9269  znegcl  9284  zaddcl  9293  ztri3or0  9295  zeo  9358  addmodlteq  10398  zabsle1  14403
  Copyright terms: Public domain W3C validator