Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elz | Unicode version |
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . 3 | |
2 | eleq1 2229 | . . 3 | |
3 | negeq 8091 | . . . 4 | |
4 | 3 | eleq1d 2235 | . . 3 |
5 | 1, 2, 4 | 3orbi123d 1301 | . 2 |
6 | df-z 9192 | . 2 | |
7 | 5, 6 | elrab2 2885 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3o 967 wceq 1343 wcel 2136 cr 7752 cc0 7753 cneg 8070 cn 8857 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-neg 8072 df-z 9192 |
This theorem is referenced by: nnnegz 9194 zre 9195 elnnz 9201 0z 9202 elnn0z 9204 elznn0nn 9205 elznn0 9206 elznn 9207 znegcl 9222 zaddcl 9231 ztri3or0 9233 zeo 9296 addmodlteq 10333 zabsle1 13550 |
Copyright terms: Public domain | W3C validator |