ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz Unicode version

Theorem elz 9376
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )

Proof of Theorem elz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2212 . . 3  |-  ( x  =  N  ->  (
x  =  0  <->  N  =  0 ) )
2 eleq1 2268 . . 3  |-  ( x  =  N  ->  (
x  e.  NN  <->  N  e.  NN ) )
3 negeq 8267 . . . 4  |-  ( x  =  N  ->  -u x  =  -u N )
43eleq1d 2274 . . 3  |-  ( x  =  N  ->  ( -u x  e.  NN  <->  -u N  e.  NN ) )
51, 2, 43orbi123d 1324 . 2  |-  ( x  =  N  ->  (
( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) 
<->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
6 df-z 9375 . 2  |-  ZZ  =  { x  e.  RR  |  ( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) }
75, 6elrab2 2932 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ w3o 980    = wceq 1373    e. wcel 2176   RRcr 7926   0cc0 7927   -ucneg 8246   NNcn 9038   ZZcz 9374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-neg 8248  df-z 9375
This theorem is referenced by:  nnnegz  9377  zre  9378  elnnz  9384  0z  9385  elnn0z  9387  elznn0nn  9388  elznn0  9389  elznn  9390  znegcl  9405  zaddcl  9414  ztri3or0  9416  zeo  9480  addmodlteq  10545  zabsle1  15509
  Copyright terms: Public domain W3C validator