| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elz | Unicode version | ||
| Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . 3
| |
| 2 | eleq1 2292 |
. . 3
| |
| 3 | negeq 8339 |
. . . 4
| |
| 4 | 3 | eleq1d 2298 |
. . 3
|
| 5 | 1, 2, 4 | 3orbi123d 1345 |
. 2
|
| 6 | df-z 9447 |
. 2
| |
| 7 | 5, 6 | elrab2 2962 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 |
| This theorem is referenced by: nnnegz 9449 zre 9450 elnnz 9456 0z 9457 elnn0z 9459 elznn0nn 9460 elznn0 9461 elznn 9462 znegcl 9477 zaddcl 9486 ztri3or0 9488 zeo 9552 addmodlteq 10620 zabsle1 15678 |
| Copyright terms: Public domain | W3C validator |