ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz Unicode version

Theorem elz 9193
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )

Proof of Theorem elz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . . 3  |-  ( x  =  N  ->  (
x  =  0  <->  N  =  0 ) )
2 eleq1 2229 . . 3  |-  ( x  =  N  ->  (
x  e.  NN  <->  N  e.  NN ) )
3 negeq 8091 . . . 4  |-  ( x  =  N  ->  -u x  =  -u N )
43eleq1d 2235 . . 3  |-  ( x  =  N  ->  ( -u x  e.  NN  <->  -u N  e.  NN ) )
51, 2, 43orbi123d 1301 . 2  |-  ( x  =  N  ->  (
( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) 
<->  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
6 df-z 9192 . 2  |-  ZZ  =  { x  e.  RR  |  ( x  =  0  \/  x  e.  NN  \/  -u x  e.  NN ) }
75, 6elrab2 2885 1  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ w3o 967    = wceq 1343    e. wcel 2136   RRcr 7752   0cc0 7753   -ucneg 8070   NNcn 8857   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-neg 8072  df-z 9192
This theorem is referenced by:  nnnegz  9194  zre  9195  elnnz  9201  0z  9202  elnn0z  9204  elznn0nn  9205  elznn0  9206  elznn  9207  znegcl  9222  zaddcl  9231  ztri3or0  9233  zeo  9296  addmodlteq  10333  zabsle1  13550
  Copyright terms: Public domain W3C validator