ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or Unicode version

Theorem ztri3or 9248
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )

Proof of Theorem ztri3or
StepHypRef Expression
1 zsubcl 9246 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
2 ztri3or0 9247 . . 3  |-  ( ( M  -  N )  e.  ZZ  ->  (
( M  -  N
)  <  0  \/  ( M  -  N
)  =  0  \/  0  <  ( M  -  N ) ) )
31, 2syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  <  0  \/  ( M  -  N
)  =  0  \/  0  <  ( M  -  N ) ) )
4 zre 9209 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
54adantr 274 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
6 zre 9209 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  RR )
76adantl 275 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
85, 7posdifd 8444 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  0  <  ( N  -  M ) ) )
97, 5resubcld 8293 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  M
)  e.  RR )
109lt0neg2d 8428 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <  ( N  -  M )  <->  -u ( N  -  M
)  <  0 ) )
117recnd 7941 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
125recnd 7941 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
1311, 12negsubdi2d 8239 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> 
-u ( N  -  M )  =  ( M  -  N ) )
1413breq1d 3997 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( N  -  M )  <  0  <->  ( M  -  N )  <  0
) )
158, 10, 143bitrd 213 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  -  N )  <  0 ) )
1612, 11subeq0ad 8233 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  =  0  <-> 
M  =  N ) )
1716bicomd 140 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  -  N
)  =  0 ) )
187, 5posdifd 8444 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  0  <  ( M  -  N ) ) )
1915, 17, 183orbi123d 1306 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  < 
N  \/  M  =  N  \/  N  < 
M )  <->  ( ( M  -  N )  <  0  \/  ( M  -  N )  =  0  \/  0  < 
( M  -  N
) ) ) )
203, 19mpbird 166 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 972    = wceq 1348    e. wcel 2141   class class class wbr 3987  (class class class)co 5851   RRcr 7766   0cc0 7767    < clt 7947    - cmin 8083   -ucneg 8084   ZZcz 9205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206
This theorem is referenced by:  zletric  9249  zlelttric  9250  zltnle  9251  zleloe  9252  zapne  9279  zdceq  9280  zdcle  9281  zdclt  9282  uzm1  9510  qtri3or  10192  iseqf1olemkle  10433  iseqf1olemklt  10434  cvgratz  11488  divalglemeunn  11873  divalglemeuneg  11875  znege1  12125  lgsdilem  13687
  Copyright terms: Public domain W3C validator