ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or Unicode version

Theorem ztri3or 9415
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )

Proof of Theorem ztri3or
StepHypRef Expression
1 zsubcl 9413 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
2 ztri3or0 9414 . . 3  |-  ( ( M  -  N )  e.  ZZ  ->  (
( M  -  N
)  <  0  \/  ( M  -  N
)  =  0  \/  0  <  ( M  -  N ) ) )
31, 2syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  <  0  \/  ( M  -  N
)  =  0  \/  0  <  ( M  -  N ) ) )
4 zre 9376 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  RR )
54adantr 276 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
6 zre 9376 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  RR )
76adantl 277 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
85, 7posdifd 8605 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  0  <  ( N  -  M ) ) )
97, 5resubcld 8453 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  M
)  e.  RR )
109lt0neg2d 8589 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <  ( N  -  M )  <->  -u ( N  -  M
)  <  0 ) )
117recnd 8101 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
125recnd 8101 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
1311, 12negsubdi2d 8399 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> 
-u ( N  -  M )  =  ( M  -  N ) )
1413breq1d 4054 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( N  -  M )  <  0  <->  ( M  -  N )  <  0
) )
158, 10, 143bitrd 214 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  -  N )  <  0 ) )
1612, 11subeq0ad 8393 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  -  N )  =  0  <-> 
M  =  N ) )
1716bicomd 141 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  =  N  <-> 
( M  -  N
)  =  0 ) )
187, 5posdifd 8605 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <->  0  <  ( M  -  N ) ) )
1915, 17, 183orbi123d 1324 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  < 
N  \/  M  =  N  \/  N  < 
M )  <->  ( ( M  -  N )  <  0  \/  ( M  -  N )  =  0  \/  0  < 
( M  -  N
) ) ) )
203, 19mpbird 167 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ w3o 980    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   RRcr 7924   0cc0 7925    < clt 8107    - cmin 8243   -ucneg 8244   ZZcz 9372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373
This theorem is referenced by:  zletric  9416  zlelttric  9417  zltnle  9418  zleloe  9419  zapne  9447  zdceq  9448  zdcle  9449  zdclt  9450  uzm1  9679  qtri3or  10383  iseqf1olemkle  10642  iseqf1olemklt  10643  iswrdiz  11001  cvgratz  11843  divalglemeunn  12232  divalglemeuneg  12234  znege1  12500  lgsdilem  15504
  Copyright terms: Public domain W3C validator