Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ontriexmidim | Unicode version |
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4498. (Contributed by Jim Kingdon, 26-Aug-2024.) |
Ref | Expression |
---|---|
ontriexmidim | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . . . 6 | |
2 | 1 | a1i 9 | . . . . 5 |
3 | ordtriexmidlem 4496 | . . . . . . . 8 | |
4 | 0elon 4370 | . . . . . . . 8 | |
5 | eleq1 2229 | . . . . . . . . . 10 | |
6 | eqeq1 2172 | . . . . . . . . . 10 | |
7 | eleq2 2230 | . . . . . . . . . 10 | |
8 | 5, 6, 7 | 3orbi123d 1301 | . . . . . . . . 9 |
9 | eleq2 2230 | . . . . . . . . . 10 | |
10 | eqeq2 2175 | . . . . . . . . . 10 | |
11 | eleq1 2229 | . . . . . . . . . 10 | |
12 | 9, 10, 11 | 3orbi123d 1301 | . . . . . . . . 9 |
13 | 8, 12 | rspc2v 2843 | . . . . . . . 8 |
14 | 3, 4, 13 | mp2an 423 | . . . . . . 7 |
15 | 3orass 971 | . . . . . . 7 | |
16 | 14, 15 | sylib 121 | . . . . . 6 |
17 | 16 | orcomd 719 | . . . . 5 |
18 | 2, 17 | ecased 1339 | . . . 4 |
19 | ordtriexmidlem2 4497 | . . . . 5 | |
20 | 0ex 4109 | . . . . . . . 8 | |
21 | 20 | snid 3607 | . . . . . . 7 |
22 | biidd 171 | . . . . . . . 8 | |
23 | 22 | elrab3 2883 | . . . . . . 7 |
24 | 21, 23 | ax-mp 5 | . . . . . 6 |
25 | 24 | biimpi 119 | . . . . 5 |
26 | 19, 25 | orim12i 749 | . . . 4 |
27 | 18, 26 | syl 14 | . . 3 |
28 | 27 | orcomd 719 | . 2 |
29 | df-dc 825 | . 2 DECID | |
30 | 28, 29 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 698 DECID wdc 824 w3o 967 wceq 1343 wcel 2136 wral 2444 crab 2448 c0 3409 csn 3576 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: exmidontri 7195 |
Copyright terms: Public domain | W3C validator |