| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ontriexmidim | Unicode version | ||
| Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4587. (Contributed by Jim Kingdon, 26-Aug-2024.) |
| Ref | Expression |
|---|---|
| ontriexmidim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3472 |
. . . . . 6
| |
| 2 | 1 | a1i 9 |
. . . . 5
|
| 3 | ordtriexmidlem 4585 |
. . . . . . . 8
| |
| 4 | 0elon 4457 |
. . . . . . . 8
| |
| 5 | eleq1 2270 |
. . . . . . . . . 10
| |
| 6 | eqeq1 2214 |
. . . . . . . . . 10
| |
| 7 | eleq2 2271 |
. . . . . . . . . 10
| |
| 8 | 5, 6, 7 | 3orbi123d 1324 |
. . . . . . . . 9
|
| 9 | eleq2 2271 |
. . . . . . . . . 10
| |
| 10 | eqeq2 2217 |
. . . . . . . . . 10
| |
| 11 | eleq1 2270 |
. . . . . . . . . 10
| |
| 12 | 9, 10, 11 | 3orbi123d 1324 |
. . . . . . . . 9
|
| 13 | 8, 12 | rspc2v 2897 |
. . . . . . . 8
|
| 14 | 3, 4, 13 | mp2an 426 |
. . . . . . 7
|
| 15 | 3orass 984 |
. . . . . . 7
| |
| 16 | 14, 15 | sylib 122 |
. . . . . 6
|
| 17 | 16 | orcomd 731 |
. . . . 5
|
| 18 | 2, 17 | ecased 1362 |
. . . 4
|
| 19 | ordtriexmidlem2 4586 |
. . . . 5
| |
| 20 | 0ex 4187 |
. . . . . . . 8
| |
| 21 | 20 | snid 3674 |
. . . . . . 7
|
| 22 | biidd 172 |
. . . . . . . 8
| |
| 23 | 22 | elrab3 2937 |
. . . . . . 7
|
| 24 | 21, 23 | ax-mp 5 |
. . . . . 6
|
| 25 | 24 | biimpi 120 |
. . . . 5
|
| 26 | 19, 25 | orim12i 761 |
. . . 4
|
| 27 | 18, 26 | syl 14 |
. . 3
|
| 28 | 27 | orcomd 731 |
. 2
|
| 29 | df-dc 837 |
. 2
| |
| 30 | 28, 29 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 |
| This theorem is referenced by: exmidontri 7385 |
| Copyright terms: Public domain | W3C validator |