| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ontriexmidim | Unicode version | ||
| Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4557. (Contributed by Jim Kingdon, 26-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| ontriexmidim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noel 3454 | 
. . . . . 6
 | |
| 2 | 1 | a1i 9 | 
. . . . 5
 | 
| 3 | ordtriexmidlem 4555 | 
. . . . . . . 8
 | |
| 4 | 0elon 4427 | 
. . . . . . . 8
 | |
| 5 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 6 | eqeq1 2203 | 
. . . . . . . . . 10
 | |
| 7 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 8 | 5, 6, 7 | 3orbi123d 1322 | 
. . . . . . . . 9
 | 
| 9 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 10 | eqeq2 2206 | 
. . . . . . . . . 10
 | |
| 11 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 12 | 9, 10, 11 | 3orbi123d 1322 | 
. . . . . . . . 9
 | 
| 13 | 8, 12 | rspc2v 2881 | 
. . . . . . . 8
 | 
| 14 | 3, 4, 13 | mp2an 426 | 
. . . . . . 7
 | 
| 15 | 3orass 983 | 
. . . . . . 7
 | |
| 16 | 14, 15 | sylib 122 | 
. . . . . 6
 | 
| 17 | 16 | orcomd 730 | 
. . . . 5
 | 
| 18 | 2, 17 | ecased 1360 | 
. . . 4
 | 
| 19 | ordtriexmidlem2 4556 | 
. . . . 5
 | |
| 20 | 0ex 4160 | 
. . . . . . . 8
 | |
| 21 | 20 | snid 3653 | 
. . . . . . 7
 | 
| 22 | biidd 172 | 
. . . . . . . 8
 | |
| 23 | 22 | elrab3 2921 | 
. . . . . . 7
 | 
| 24 | 21, 23 | ax-mp 5 | 
. . . . . 6
 | 
| 25 | 24 | biimpi 120 | 
. . . . 5
 | 
| 26 | 19, 25 | orim12i 760 | 
. . . 4
 | 
| 27 | 18, 26 | syl 14 | 
. . 3
 | 
| 28 | 27 | orcomd 730 | 
. 2
 | 
| 29 | df-dc 836 | 
. 2
 | |
| 30 | 28, 29 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: exmidontri 7306 | 
| Copyright terms: Public domain | W3C validator |