ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontriexmidim Unicode version

Theorem ontriexmidim 4480
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4479. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontriexmidim  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ontriexmidim
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 noel 3398 . . . . . 6  |-  -.  {
z  e.  { (/) }  |  ph }  e.  (/)
21a1i 9 . . . . 5  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  -.  { z  e.  { (/) }  |  ph }  e.  (/) )
3 ordtriexmidlem 4477 . . . . . . . 8  |-  { z  e.  { (/) }  |  ph }  e.  On
4 0elon 4352 . . . . . . . 8  |-  (/)  e.  On
5 eleq1 2220 . . . . . . . . . 10  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  e.  y  <->  { z  e.  { (/)
}  |  ph }  e.  y ) )
6 eqeq1 2164 . . . . . . . . . 10  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  =  y  <->  { z  e.  { (/)
}  |  ph }  =  y ) )
7 eleq2 2221 . . . . . . . . . 10  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( y  e.  x  <->  y  e.  {
z  e.  { (/) }  |  ph } ) )
85, 6, 73orbi123d 1293 . . . . . . . . 9  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <->  ( {
z  e.  { (/) }  |  ph }  e.  y  \/  { z  e.  { (/) }  |  ph }  =  y  \/  y  e.  { z  e.  { (/) }  |  ph } ) ) )
9 eleq2 2221 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( { z  e.  { (/) }  |  ph }  e.  y 
<->  { z  e.  { (/)
}  |  ph }  e.  (/) ) )
10 eqeq2 2167 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( { z  e.  { (/) }  |  ph }  =  y 
<->  { z  e.  { (/)
}  |  ph }  =  (/) ) )
11 eleq1 2220 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  e.  { z  e. 
{ (/) }  |  ph } 
<->  (/)  e.  { z  e. 
{ (/) }  |  ph } ) )
129, 10, 113orbi123d 1293 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( { z  e.  { (/)
}  |  ph }  e.  y  \/  { z  e.  { (/) }  |  ph }  =  y  \/  y  e.  { z  e.  { (/) }  |  ph } )  <->  ( {
z  e.  { (/) }  |  ph }  e.  (/) 
\/  { z  e. 
{ (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
138, 12rspc2v 2829 . . . . . . . 8  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  On  /\  (/)  e.  On )  ->  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  ( { z  e.  { (/)
}  |  ph }  e.  (/)  \/  { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
143, 4, 13mp2an 423 . . . . . . 7  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  ( { z  e.  { (/)
}  |  ph }  e.  (/)  \/  { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) )
15 3orass 966 . . . . . . 7  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  (/)  \/  { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  <-> 
( { z  e. 
{ (/) }  |  ph }  e.  (/)  \/  ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
1614, 15sylib 121 . . . . . 6  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  ( { z  e.  { (/)
}  |  ph }  e.  (/)  \/  ( { z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } ) ) )
1716orcomd 719 . . . . 5  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  (
( { z  e. 
{ (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  \/  { z  e. 
{ (/) }  |  ph }  e.  (/) ) )
182, 17ecased 1331 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) )
19 ordtriexmidlem2 4478 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
20 0ex 4091 . . . . . . . 8  |-  (/)  e.  _V
2120snid 3591 . . . . . . 7  |-  (/)  e.  { (/)
}
22 biidd 171 . . . . . . . 8  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2322elrab3 2869 . . . . . . 7  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
2421, 23ax-mp 5 . . . . . 6  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2524biimpi 119 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
2619, 25orim12i 749 . . . 4  |-  ( ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  ->  ( -.  ph  \/  ph ) )
2718, 26syl 14 . . 3  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  ( -.  ph  \/  ph )
)
2827orcomd 719 . 2  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  ->  ( ph  \/  -.  ph )
)
29 df-dc 821 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
3028, 29sylibr 133 1  |-  ( A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )  -> DECID  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 698  DECID wdc 820    \/ w3o 962    = wceq 1335    e. wcel 2128   A.wral 2435   {crab 2439   (/)c0 3394   {csn 3560   Oncon0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4135
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-uni 3773  df-tr 4063  df-iord 4326  df-on 4328  df-suc 4331
This theorem is referenced by:  exmidontri  7168
  Copyright terms: Public domain W3C validator