Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ontriexmidim | Unicode version |
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4505. (Contributed by Jim Kingdon, 26-Aug-2024.) |
Ref | Expression |
---|---|
ontriexmidim | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . . . . 6 | |
2 | 1 | a1i 9 | . . . . 5 |
3 | ordtriexmidlem 4503 | . . . . . . . 8 | |
4 | 0elon 4377 | . . . . . . . 8 | |
5 | eleq1 2233 | . . . . . . . . . 10 | |
6 | eqeq1 2177 | . . . . . . . . . 10 | |
7 | eleq2 2234 | . . . . . . . . . 10 | |
8 | 5, 6, 7 | 3orbi123d 1306 | . . . . . . . . 9 |
9 | eleq2 2234 | . . . . . . . . . 10 | |
10 | eqeq2 2180 | . . . . . . . . . 10 | |
11 | eleq1 2233 | . . . . . . . . . 10 | |
12 | 9, 10, 11 | 3orbi123d 1306 | . . . . . . . . 9 |
13 | 8, 12 | rspc2v 2847 | . . . . . . . 8 |
14 | 3, 4, 13 | mp2an 424 | . . . . . . 7 |
15 | 3orass 976 | . . . . . . 7 | |
16 | 14, 15 | sylib 121 | . . . . . 6 |
17 | 16 | orcomd 724 | . . . . 5 |
18 | 2, 17 | ecased 1344 | . . . 4 |
19 | ordtriexmidlem2 4504 | . . . . 5 | |
20 | 0ex 4116 | . . . . . . . 8 | |
21 | 20 | snid 3614 | . . . . . . 7 |
22 | biidd 171 | . . . . . . . 8 | |
23 | 22 | elrab3 2887 | . . . . . . 7 |
24 | 21, 23 | ax-mp 5 | . . . . . 6 |
25 | 24 | biimpi 119 | . . . . 5 |
26 | 19, 25 | orim12i 754 | . . . 4 |
27 | 18, 26 | syl 14 | . . 3 |
28 | 27 | orcomd 724 | . 2 |
29 | df-dc 830 | . 2 DECID | |
30 | 28, 29 | sylibr 133 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 703 DECID wdc 829 w3o 972 wceq 1348 wcel 2141 wral 2448 crab 2452 c0 3414 csn 3583 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: exmidontri 7216 |
Copyright terms: Public domain | W3C validator |