ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or Unicode version

Theorem nqtri3or 7358
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )

Proof of Theorem nqtri3or
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7310 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 3992 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  <Q  [
<. u ,  v >. ]  ~Q  <->  A  <Q  [ <. u ,  v >. ]  ~Q  ) )
3 eqeq1 2177 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v
>. ]  ~Q  <->  A  =  [ <. u ,  v
>. ]  ~Q  ) )
4 breq2 3993 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. u ,  v >. ]  ~Q  <Q  A ) )
52, 3, 43orbi123d 1306 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v
>. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) 
<->  ( A  <Q  [ <. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A ) ) )
6 breq2 3993 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  <Q  [ <. u ,  v >. ]  ~Q  <->  A 
<Q  B ) )
7 eqeq2 2180 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  =  [ <. u ,  v >. ]  ~Q  <->  A  =  B
) )
8 breq1 3992 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( [ <. u ,  v >. ]  ~Q  <Q  A  <->  B  <Q  A ) )
96, 7, 83orbi123d 1306 . 2  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v
>. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A )  <->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) ) )
10 mulclpi 7290 . . . . 5  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1110ad2ant2rl 508 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
12 mulclpi 7290 . . . . 5  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1312ad2ant2lr 507 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
14 pitri3or 7284 . . . 4  |-  ( ( ( z  .N  v
)  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( ( z  .N  v )  <N  (
w  .N  u )  \/  ( z  .N  v )  =  ( w  .N  u )  \/  ( w  .N  u )  <N  (
z  .N  v ) ) )
1511, 13, 14syl2anc 409 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) )
16 ordpipqqs 7336 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v ) 
<N  ( w  .N  u
) ) )
17 enqeceq 7321 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v )  =  ( w  .N  u ) ) )
18 ordpipqqs 7336 . . . . . 6  |-  ( ( ( u  e.  N.  /\  v  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
1918ancoms 266 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
20 mulcompig 7293 . . . . . . 7  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( u  .N  w ) )
2120ad2ant2lr 507 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  =  ( u  .N  w ) )
22 mulcompig 7293 . . . . . . 7  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  =  ( v  .N  z ) )
2322ad2ant2rl 508 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  =  ( v  .N  z ) )
2421, 23breq12d 4002 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
w  .N  u ) 
<N  ( z  .N  v
)  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
2519, 24bitr4d 190 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( w  .N  u )  <N  (
z  .N  v ) ) )
2616, 17, 253orbi123d 1306 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )  <->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) ) )
2715, 26mpbird 166 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
281, 5, 9, 272ecoptocl 6601 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 972    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989  (class class class)co 5853   [cec 6511   N.cnpi 7234    .N cmi 7236    <N clti 7237    ~Q ceq 7241   Q.cnq 7242    <Q cltq 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-enq 7309  df-nqqs 7310  df-ltnqqs 7315
This theorem is referenced by:  ltsonq  7360  nqtric  7361  addlocprlem  7497  nqprloc  7507  distrlem4prl  7546  distrlem4pru  7547  ltexprlemrl  7572  aptiprleml  7601  aptiprlemu  7602
  Copyright terms: Public domain W3C validator