ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or Unicode version

Theorem nqtri3or 7456
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )

Proof of Theorem nqtri3or
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7408 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 4032 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  <Q  [
<. u ,  v >. ]  ~Q  <->  A  <Q  [ <. u ,  v >. ]  ~Q  ) )
3 eqeq1 2200 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v
>. ]  ~Q  <->  A  =  [ <. u ,  v
>. ]  ~Q  ) )
4 breq2 4033 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. u ,  v >. ]  ~Q  <Q  A ) )
52, 3, 43orbi123d 1322 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v
>. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) 
<->  ( A  <Q  [ <. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A ) ) )
6 breq2 4033 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  <Q  [ <. u ,  v >. ]  ~Q  <->  A 
<Q  B ) )
7 eqeq2 2203 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  =  [ <. u ,  v >. ]  ~Q  <->  A  =  B
) )
8 breq1 4032 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( [ <. u ,  v >. ]  ~Q  <Q  A  <->  B  <Q  A ) )
96, 7, 83orbi123d 1322 . 2  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v
>. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A )  <->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) ) )
10 mulclpi 7388 . . . . 5  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1110ad2ant2rl 511 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
12 mulclpi 7388 . . . . 5  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1312ad2ant2lr 510 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
14 pitri3or 7382 . . . 4  |-  ( ( ( z  .N  v
)  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( ( z  .N  v )  <N  (
w  .N  u )  \/  ( z  .N  v )  =  ( w  .N  u )  \/  ( w  .N  u )  <N  (
z  .N  v ) ) )
1511, 13, 14syl2anc 411 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) )
16 ordpipqqs 7434 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v ) 
<N  ( w  .N  u
) ) )
17 enqeceq 7419 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v )  =  ( w  .N  u ) ) )
18 ordpipqqs 7434 . . . . . 6  |-  ( ( ( u  e.  N.  /\  v  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
1918ancoms 268 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
20 mulcompig 7391 . . . . . . 7  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( u  .N  w ) )
2120ad2ant2lr 510 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  =  ( u  .N  w ) )
22 mulcompig 7391 . . . . . . 7  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  =  ( v  .N  z ) )
2322ad2ant2rl 511 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  =  ( v  .N  z ) )
2421, 23breq12d 4042 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
w  .N  u ) 
<N  ( z  .N  v
)  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
2519, 24bitr4d 191 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( w  .N  u )  <N  (
z  .N  v ) ) )
2616, 17, 253orbi123d 1322 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )  <->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) ) )
2715, 26mpbird 167 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
281, 5, 9, 272ecoptocl 6677 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2164   <.cop 3621   class class class wbr 4029  (class class class)co 5918   [cec 6585   N.cnpi 7332    .N cmi 7334    <N clti 7335    ~Q ceq 7339   Q.cnq 7340    <Q cltq 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-lti 7367  df-enq 7407  df-nqqs 7408  df-ltnqqs 7413
This theorem is referenced by:  ltsonq  7458  nqtric  7459  addlocprlem  7595  nqprloc  7605  distrlem4prl  7644  distrlem4pru  7645  ltexprlemrl  7670  aptiprleml  7699  aptiprlemu  7700
  Copyright terms: Public domain W3C validator