ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or Unicode version

Theorem nqtri3or 7397
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )

Proof of Theorem nqtri3or
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7349 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 4008 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  <Q  [
<. u ,  v >. ]  ~Q  <->  A  <Q  [ <. u ,  v >. ]  ~Q  ) )
3 eqeq1 2184 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v
>. ]  ~Q  <->  A  =  [ <. u ,  v
>. ]  ~Q  ) )
4 breq2 4009 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. u ,  v >. ]  ~Q  <Q  A ) )
52, 3, 43orbi123d 1311 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v
>. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) 
<->  ( A  <Q  [ <. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A ) ) )
6 breq2 4009 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  <Q  [ <. u ,  v >. ]  ~Q  <->  A 
<Q  B ) )
7 eqeq2 2187 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  =  [ <. u ,  v >. ]  ~Q  <->  A  =  B
) )
8 breq1 4008 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( [ <. u ,  v >. ]  ~Q  <Q  A  <->  B  <Q  A ) )
96, 7, 83orbi123d 1311 . 2  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v
>. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A )  <->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) ) )
10 mulclpi 7329 . . . . 5  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1110ad2ant2rl 511 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
12 mulclpi 7329 . . . . 5  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1312ad2ant2lr 510 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
14 pitri3or 7323 . . . 4  |-  ( ( ( z  .N  v
)  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( ( z  .N  v )  <N  (
w  .N  u )  \/  ( z  .N  v )  =  ( w  .N  u )  \/  ( w  .N  u )  <N  (
z  .N  v ) ) )
1511, 13, 14syl2anc 411 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) )
16 ordpipqqs 7375 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v ) 
<N  ( w  .N  u
) ) )
17 enqeceq 7360 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v )  =  ( w  .N  u ) ) )
18 ordpipqqs 7375 . . . . . 6  |-  ( ( ( u  e.  N.  /\  v  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
1918ancoms 268 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
20 mulcompig 7332 . . . . . . 7  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( u  .N  w ) )
2120ad2ant2lr 510 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  =  ( u  .N  w ) )
22 mulcompig 7332 . . . . . . 7  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  =  ( v  .N  z ) )
2322ad2ant2rl 511 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  =  ( v  .N  z ) )
2421, 23breq12d 4018 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
w  .N  u ) 
<N  ( z  .N  v
)  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
2519, 24bitr4d 191 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( w  .N  u )  <N  (
z  .N  v ) ) )
2616, 17, 253orbi123d 1311 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )  <->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) ) )
2715, 26mpbird 167 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
281, 5, 9, 272ecoptocl 6625 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005  (class class class)co 5877   [cec 6535   N.cnpi 7273    .N cmi 7275    <N clti 7276    ~Q ceq 7280   Q.cnq 7281    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-mi 7307  df-lti 7308  df-enq 7348  df-nqqs 7349  df-ltnqqs 7354
This theorem is referenced by:  ltsonq  7399  nqtric  7400  addlocprlem  7536  nqprloc  7546  distrlem4prl  7585  distrlem4pru  7586  ltexprlemrl  7611  aptiprleml  7640  aptiprlemu  7641
  Copyright terms: Public domain W3C validator