ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or Unicode version

Theorem nqtri3or 7579
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )

Proof of Theorem nqtri3or
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7531 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 breq1 4085 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  <Q  [
<. u ,  v >. ]  ~Q  <->  A  <Q  [ <. u ,  v >. ]  ~Q  ) )
3 eqeq1 2236 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v
>. ]  ~Q  <->  A  =  [ <. u ,  v
>. ]  ~Q  ) )
4 breq2 4086 . . 3  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  [ <. u ,  v >. ]  ~Q  <Q  A ) )
52, 3, 43orbi123d 1345 . 2  |-  ( [
<. z ,  w >. ]  ~Q  =  A  -> 
( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v
>. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v
>. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) 
<->  ( A  <Q  [ <. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A ) ) )
6 breq2 4086 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  <Q  [ <. u ,  v >. ]  ~Q  <->  A 
<Q  B ) )
7 eqeq2 2239 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( A  =  [ <. u ,  v >. ]  ~Q  <->  A  =  B
) )
8 breq1 4085 . . 3  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( [ <. u ,  v >. ]  ~Q  <Q  A  <->  B  <Q  A ) )
96, 7, 83orbi123d 1345 . 2  |-  ( [
<. u ,  v >. ]  ~Q  =  B  -> 
( ( A  <Q  [
<. u ,  v >. ]  ~Q  \/  A  =  [ <. u ,  v
>. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  A )  <->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) ) )
10 mulclpi 7511 . . . . 5  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  e.  N. )
1110ad2ant2rl 511 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  e.  N. )
12 mulclpi 7511 . . . . 5  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  e.  N. )
1312ad2ant2lr 510 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  e.  N. )
14 pitri3or 7505 . . . 4  |-  ( ( ( z  .N  v
)  e.  N.  /\  ( w  .N  u
)  e.  N. )  ->  ( ( z  .N  v )  <N  (
w  .N  u )  \/  ( z  .N  v )  =  ( w  .N  u )  \/  ( w  .N  u )  <N  (
z  .N  v ) ) )
1511, 13, 14syl2anc 411 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) )
16 ordpipqqs 7557 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v ) 
<N  ( w  .N  u
) ) )
17 enqeceq 7542 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  <->  ( z  .N  v )  =  ( w  .N  u ) ) )
18 ordpipqqs 7557 . . . . . 6  |-  ( ( ( u  e.  N.  /\  v  e.  N. )  /\  ( z  e.  N.  /\  w  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
1918ancoms 268 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
20 mulcompig 7514 . . . . . . 7  |-  ( ( w  e.  N.  /\  u  e.  N. )  ->  ( w  .N  u
)  =  ( u  .N  w ) )
2120ad2ant2lr 510 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( w  .N  u )  =  ( u  .N  w ) )
22 mulcompig 7514 . . . . . . 7  |-  ( ( z  e.  N.  /\  v  e.  N. )  ->  ( z  .N  v
)  =  ( v  .N  z ) )
2322ad2ant2rl 511 . . . . . 6  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( z  .N  v )  =  ( v  .N  z ) )
2421, 23breq12d 4095 . . . . 5  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( (
w  .N  u ) 
<N  ( z  .N  v
)  <->  ( u  .N  w )  <N  (
v  .N  z ) ) )
2519, 24bitr4d 191 . . . 4  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  <->  ( w  .N  u )  <N  (
z  .N  v ) ) )
2616, 17, 253orbi123d 1345 . . 3  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  )  <->  ( (
z  .N  v ) 
<N  ( w  .N  u
)  \/  ( z  .N  v )  =  ( w  .N  u
)  \/  ( w  .N  u )  <N 
( z  .N  v
) ) ) )
2715, 26mpbird 167 . 2  |-  ( ( ( z  e.  N.  /\  w  e.  N. )  /\  ( u  e.  N.  /\  v  e.  N. )
)  ->  ( [ <. z ,  w >. ]  ~Q  <Q  [ <. u ,  v >. ]  ~Q  \/  [ <. z ,  w >. ]  ~Q  =  [ <. u ,  v >. ]  ~Q  \/  [ <. u ,  v >. ]  ~Q  <Q  [ <. z ,  w >. ]  ~Q  ) )
281, 5, 9, 272ecoptocl 6768 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  \/  A  =  B  \/  B  <Q  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    = wceq 1395    e. wcel 2200   <.cop 3669   class class class wbr 4082  (class class class)co 6000   [cec 6676   N.cnpi 7455    .N cmi 7457    <N clti 7458    ~Q ceq 7462   Q.cnq 7463    <Q cltq 7468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-mi 7489  df-lti 7490  df-enq 7530  df-nqqs 7531  df-ltnqqs 7536
This theorem is referenced by:  ltsonq  7581  nqtric  7582  addlocprlem  7718  nqprloc  7728  distrlem4prl  7767  distrlem4pru  7768  ltexprlemrl  7793  aptiprleml  7822  aptiprlemu  7823
  Copyright terms: Public domain W3C validator