| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitri3or | Unicode version | ||
| Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.) |
| Ref | Expression |
|---|---|
| pitri3or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7424 |
. . 3
| |
| 2 | pinn 7424 |
. . 3
| |
| 3 | nntri3or 6581 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | ltpiord 7434 |
. . 3
| |
| 6 | biidd 172 |
. . 3
| |
| 7 | ltpiord 7434 |
. . . 4
| |
| 8 | 7 | ancoms 268 |
. . 3
|
| 9 | 5, 6, 8 | 3orbi123d 1324 |
. 2
|
| 10 | 4, 9 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-tr 4144 df-eprel 4337 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-ni 7419 df-lti 7422 |
| This theorem is referenced by: nqtri3or 7511 caucvgprlemnkj 7781 caucvgprlemnbj 7782 caucvgprprlemnkj 7807 caucvgprprlemnbj 7808 caucvgsr 7917 |
| Copyright terms: Public domain | W3C validator |