| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wetriext | Unicode version | ||
| Description: A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| wetriext.we |
|
| wetriext.a |
|
| wetriext.tri |
|
| wetriext.b |
|
| wetriext.c |
|
| wetriext.ext |
|
| Ref | Expression |
|---|---|
| wetriext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4036 |
. . . . . 6
| |
| 2 | breq1 4036 |
. . . . . 6
| |
| 3 | 1, 2 | bibi12d 235 |
. . . . 5
|
| 4 | wetriext.ext |
. . . . 5
| |
| 5 | wetriext.b |
. . . . 5
| |
| 6 | 3, 4, 5 | rspcdva 2873 |
. . . 4
|
| 7 | 6 | biimpar 297 |
. . 3
|
| 8 | wetriext.we |
. . . . . 6
| |
| 9 | wefr 4393 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | wetriext.a |
. . . . 5
| |
| 12 | frirrg 4385 |
. . . . 5
| |
| 13 | 10, 11, 5, 12 | syl3anc 1249 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 7, 14 | pm2.21dd 621 |
. 2
|
| 16 | simpr 110 |
. 2
| |
| 17 | breq1 4036 |
. . . . . 6
| |
| 18 | breq1 4036 |
. . . . . 6
| |
| 19 | 17, 18 | bibi12d 235 |
. . . . 5
|
| 20 | wetriext.c |
. . . . 5
| |
| 21 | 19, 4, 20 | rspcdva 2873 |
. . . 4
|
| 22 | 21 | biimpa 296 |
. . 3
|
| 23 | frirrg 4385 |
. . . . 5
| |
| 24 | 10, 11, 20, 23 | syl3anc 1249 |
. . . 4
|
| 25 | 24 | adantr 276 |
. . 3
|
| 26 | 22, 25 | pm2.21dd 621 |
. 2
|
| 27 | wetriext.tri |
. . 3
| |
| 28 | breq1 4036 |
. . . . . 6
| |
| 29 | eqeq1 2203 |
. . . . . 6
| |
| 30 | breq2 4037 |
. . . . . 6
| |
| 31 | 28, 29, 30 | 3orbi123d 1322 |
. . . . 5
|
| 32 | breq2 4037 |
. . . . . 6
| |
| 33 | eqeq2 2206 |
. . . . . 6
| |
| 34 | breq1 4036 |
. . . . . 6
| |
| 35 | 32, 33, 34 | 3orbi123d 1322 |
. . . . 5
|
| 36 | 31, 35 | rspc2v 2881 |
. . . 4
|
| 37 | 5, 20, 36 | syl2anc 411 |
. . 3
|
| 38 | 27, 37 | mpd 13 |
. 2
|
| 39 | 15, 16, 26, 38 | mpjao3dan 1318 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-frfor 4366 df-frind 4367 df-wetr 4369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |