Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > wetriext | Unicode version |
Description: A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.) |
Ref | Expression |
---|---|
wetriext.we | |
wetriext.a | |
wetriext.tri | |
wetriext.b | |
wetriext.c | |
wetriext.ext |
Ref | Expression |
---|---|
wetriext |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4001 | . . . . . 6 | |
2 | breq1 4001 | . . . . . 6 | |
3 | 1, 2 | bibi12d 235 | . . . . 5 |
4 | wetriext.ext | . . . . 5 | |
5 | wetriext.b | . . . . 5 | |
6 | 3, 4, 5 | rspcdva 2844 | . . . 4 |
7 | 6 | biimpar 297 | . . 3 |
8 | wetriext.we | . . . . . 6 | |
9 | wefr 4352 | . . . . . 6 | |
10 | 8, 9 | syl 14 | . . . . 5 |
11 | wetriext.a | . . . . 5 | |
12 | frirrg 4344 | . . . . 5 | |
13 | 10, 11, 5, 12 | syl3anc 1238 | . . . 4 |
14 | 13 | adantr 276 | . . 3 |
15 | 7, 14 | pm2.21dd 620 | . 2 |
16 | simpr 110 | . 2 | |
17 | breq1 4001 | . . . . . 6 | |
18 | breq1 4001 | . . . . . 6 | |
19 | 17, 18 | bibi12d 235 | . . . . 5 |
20 | wetriext.c | . . . . 5 | |
21 | 19, 4, 20 | rspcdva 2844 | . . . 4 |
22 | 21 | biimpa 296 | . . 3 |
23 | frirrg 4344 | . . . . 5 | |
24 | 10, 11, 20, 23 | syl3anc 1238 | . . . 4 |
25 | 24 | adantr 276 | . . 3 |
26 | 22, 25 | pm2.21dd 620 | . 2 |
27 | wetriext.tri | . . 3 | |
28 | breq1 4001 | . . . . . 6 | |
29 | eqeq1 2182 | . . . . . 6 | |
30 | breq2 4002 | . . . . . 6 | |
31 | 28, 29, 30 | 3orbi123d 1311 | . . . . 5 |
32 | breq2 4002 | . . . . . 6 | |
33 | eqeq2 2185 | . . . . . 6 | |
34 | breq1 4001 | . . . . . 6 | |
35 | 32, 33, 34 | 3orbi123d 1311 | . . . . 5 |
36 | 31, 35 | rspc2v 2852 | . . . 4 |
37 | 5, 20, 36 | syl2anc 411 | . . 3 |
38 | 27, 37 | mpd 13 | . 2 |
39 | 15, 16, 26, 38 | mpjao3dan 1307 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 w3o 977 wceq 1353 wcel 2146 wral 2453 class class class wbr 3998 wfr 4322 wwe 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-frfor 4325 df-frind 4326 df-wetr 4328 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |