| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > wetriext | Unicode version | ||
| Description: A trichotomous well-order is extensional. (Contributed by Jim Kingdon, 26-Sep-2021.) |
| Ref | Expression |
|---|---|
| wetriext.we |
|
| wetriext.a |
|
| wetriext.tri |
|
| wetriext.b |
|
| wetriext.c |
|
| wetriext.ext |
|
| Ref | Expression |
|---|---|
| wetriext |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4054 |
. . . . . 6
| |
| 2 | breq1 4054 |
. . . . . 6
| |
| 3 | 1, 2 | bibi12d 235 |
. . . . 5
|
| 4 | wetriext.ext |
. . . . 5
| |
| 5 | wetriext.b |
. . . . 5
| |
| 6 | 3, 4, 5 | rspcdva 2886 |
. . . 4
|
| 7 | 6 | biimpar 297 |
. . 3
|
| 8 | wetriext.we |
. . . . . 6
| |
| 9 | wefr 4413 |
. . . . . 6
| |
| 10 | 8, 9 | syl 14 |
. . . . 5
|
| 11 | wetriext.a |
. . . . 5
| |
| 12 | frirrg 4405 |
. . . . 5
| |
| 13 | 10, 11, 5, 12 | syl3anc 1250 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 7, 14 | pm2.21dd 621 |
. 2
|
| 16 | simpr 110 |
. 2
| |
| 17 | breq1 4054 |
. . . . . 6
| |
| 18 | breq1 4054 |
. . . . . 6
| |
| 19 | 17, 18 | bibi12d 235 |
. . . . 5
|
| 20 | wetriext.c |
. . . . 5
| |
| 21 | 19, 4, 20 | rspcdva 2886 |
. . . 4
|
| 22 | 21 | biimpa 296 |
. . 3
|
| 23 | frirrg 4405 |
. . . . 5
| |
| 24 | 10, 11, 20, 23 | syl3anc 1250 |
. . . 4
|
| 25 | 24 | adantr 276 |
. . 3
|
| 26 | 22, 25 | pm2.21dd 621 |
. 2
|
| 27 | wetriext.tri |
. . 3
| |
| 28 | breq1 4054 |
. . . . . 6
| |
| 29 | eqeq1 2213 |
. . . . . 6
| |
| 30 | breq2 4055 |
. . . . . 6
| |
| 31 | 28, 29, 30 | 3orbi123d 1324 |
. . . . 5
|
| 32 | breq2 4055 |
. . . . . 6
| |
| 33 | eqeq2 2216 |
. . . . . 6
| |
| 34 | breq1 4054 |
. . . . . 6
| |
| 35 | 32, 33, 34 | 3orbi123d 1324 |
. . . . 5
|
| 36 | 31, 35 | rspc2v 2894 |
. . . 4
|
| 37 | 5, 20, 36 | syl2anc 411 |
. . 3
|
| 38 | 27, 37 | mpd 13 |
. 2
|
| 39 | 15, 16, 26, 38 | mpjao3dan 1320 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-frfor 4386 df-frind 4387 df-wetr 4389 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |