ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5cn Unicode version

Theorem 5cn 9070
Description: The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
5cn  |-  5  e.  CC

Proof of Theorem 5cn
StepHypRef Expression
1 5re 9069 . 2  |-  5  e.  RR
21recni 8038 1  |-  5  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   CCcc 7877   5c5 9044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-2 9049  df-3 9050  df-4 9051  df-5 9052
This theorem is referenced by:  6m1e5  9113  5p2e7  9137  5p3e8  9138  5p4e9  9139  5p5e10  9527  5t2e10  9556  5recm6rec  9600  ef01bndlem  11921  5ndvds3  12099  5ndvds6  12100  dec5dvds  12581  dec5nprm  12583  2exp11  12605  2exp16  12606  lgsdir2lem1  15269  2lgslem3c  15336  2lgsoddprmlem3d  15351  ex-fac  15374
  Copyright terms: Public domain W3C validator