ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5cn Unicode version

Theorem 5cn 8929
Description: The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
5cn  |-  5  e.  CC

Proof of Theorem 5cn
StepHypRef Expression
1 5re 8928 . 2  |-  5  e.  RR
21recni 7903 1  |-  5  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2135   CCcc 7743   5c5 8903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-11 1493  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146  ax-resscn 7837  ax-1re 7839  ax-addrcl 7842
This theorem depends on definitions:  df-bi 116  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-in 3118  df-ss 3125  df-2 8908  df-3 8909  df-4 8910  df-5 8911
This theorem is referenced by:  6m1e5  8972  5p2e7  8995  5p3e8  8996  5p4e9  8997  5p5e10  9384  5t2e10  9413  5recm6rec  9457  ef01bndlem  11684  ex-fac  13463
  Copyright terms: Public domain W3C validator