| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5re | Unicode version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9172 |
. 2
| |
| 2 | 4re 9187 |
. . 3
| |
| 3 | 1re 8145 |
. . 3
| |
| 4 | 2, 3 | readdcli 8159 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9169 df-3 9170 df-4 9171 df-5 9172 |
| This theorem is referenced by: 5cn 9190 6re 9191 6pos 9211 3lt5 9287 2lt5 9288 1lt5 9289 5lt6 9290 4lt6 9291 5lt7 9296 4lt7 9297 5lt8 9303 4lt8 9304 5lt9 9311 4lt9 9312 5lt10 9712 4lt10 9713 5recm6rec 9721 ef01bndlem 12267 vscandxnscandx 13195 slotsdifipndx 13208 slotstnscsi 13228 plendxnscandx 13241 slotsdnscsi 13256 lgsdir2lem1 15707 gausslemma2dlem4 15743 2lgslem3 15780 |
| Copyright terms: Public domain | W3C validator |