ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5re Unicode version

Theorem 5re 9061
Description: The number 5 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
5re  |-  5  e.  RR

Proof of Theorem 5re
StepHypRef Expression
1 df-5 9044 . 2  |-  5  =  ( 4  +  1 )
2 4re 9059 . . 3  |-  4  e.  RR
3 1re 8018 . . 3  |-  1  e.  RR
42, 3readdcli 8032 . 2  |-  ( 4  +  1 )  e.  RR
51, 4eqeltri 2266 1  |-  5  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2164  (class class class)co 5918   RRcr 7871   1c1 7873    + caddc 7875   4c4 9035   5c5 9036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-2 9041  df-3 9042  df-4 9043  df-5 9044
This theorem is referenced by:  5cn  9062  6re  9063  6pos  9083  3lt5  9158  2lt5  9159  1lt5  9160  5lt6  9161  4lt6  9162  5lt7  9167  4lt7  9168  5lt8  9174  4lt8  9175  5lt9  9182  4lt9  9183  5lt10  9582  4lt10  9583  5recm6rec  9591  ef01bndlem  11899  vscandxnscandx  12779  slotsdifipndx  12792  slotstnscsi  12812  plendxnscandx  12825  slotsdnscsi  12836  lgsdir2lem1  15144  gausslemma2dlem4  15180
  Copyright terms: Public domain W3C validator