ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5re Unicode version

Theorem 5re 9189
Description: The number 5 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
5re  |-  5  e.  RR

Proof of Theorem 5re
StepHypRef Expression
1 df-5 9172 . 2  |-  5  =  ( 4  +  1 )
2 4re 9187 . . 3  |-  4  e.  RR
3 1re 8145 . . 3  |-  1  e.  RR
42, 3readdcli 8159 . 2  |-  ( 4  +  1 )  e.  RR
51, 4eqeltri 2302 1  |-  5  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2200  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002   4c4 9163   5c5 9164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-2 9169  df-3 9170  df-4 9171  df-5 9172
This theorem is referenced by:  5cn  9190  6re  9191  6pos  9211  3lt5  9287  2lt5  9288  1lt5  9289  5lt6  9290  4lt6  9291  5lt7  9296  4lt7  9297  5lt8  9303  4lt8  9304  5lt9  9311  4lt9  9312  5lt10  9712  4lt10  9713  5recm6rec  9721  ef01bndlem  12267  vscandxnscandx  13195  slotsdifipndx  13208  slotstnscsi  13228  plendxnscandx  13241  slotsdnscsi  13256  lgsdir2lem1  15707  gausslemma2dlem4  15743  2lgslem3  15780
  Copyright terms: Public domain W3C validator