| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5re | Unicode version | ||
| Description: The number 5 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 5re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9100 |
. 2
| |
| 2 | 4re 9115 |
. . 3
| |
| 3 | 1re 8073 |
. . 3
| |
| 4 | 2, 3 | readdcli 8087 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9097 df-3 9098 df-4 9099 df-5 9100 |
| This theorem is referenced by: 5cn 9118 6re 9119 6pos 9139 3lt5 9215 2lt5 9216 1lt5 9217 5lt6 9218 4lt6 9219 5lt7 9224 4lt7 9225 5lt8 9231 4lt8 9232 5lt9 9239 4lt9 9240 5lt10 9640 4lt10 9641 5recm6rec 9649 ef01bndlem 12100 vscandxnscandx 13027 slotsdifipndx 13040 slotstnscsi 13060 plendxnscandx 13073 slotsdnscsi 13088 lgsdir2lem1 15538 gausslemma2dlem4 15574 2lgslem3 15611 |
| Copyright terms: Public domain | W3C validator |