| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5cn | GIF version | ||
| Description: The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9157 | . 2 ⊢ 5 ∈ ℝ | |
| 2 | 1 | recni 8126 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ℂcc 7965 5c5 9132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 df-2 9137 df-3 9138 df-4 9139 df-5 9140 |
| This theorem is referenced by: 6m1e5 9201 5p2e7 9225 5p3e8 9226 5p4e9 9227 5p5e10 9616 5t2e10 9645 5recm6rec 9689 ef01bndlem 12233 5ndvds3 12411 5ndvds6 12412 dec5dvds 12901 dec5nprm 12903 2exp11 12925 2exp16 12926 lgsdir2lem1 15672 2lgslem3c 15739 2lgsoddprmlem3d 15754 ex-fac 16002 |
| Copyright terms: Public domain | W3C validator |