| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5cn | GIF version | ||
| Description: The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9122 | . 2 ⊢ 5 ∈ ℝ | |
| 2 | 1 | recni 8091 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℂcc 7930 5c5 9097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 df-2 9102 df-3 9103 df-4 9104 df-5 9105 |
| This theorem is referenced by: 6m1e5 9166 5p2e7 9190 5p3e8 9191 5p4e9 9192 5p5e10 9581 5t2e10 9610 5recm6rec 9654 ef01bndlem 12111 5ndvds3 12289 5ndvds6 12290 dec5dvds 12779 dec5nprm 12781 2exp11 12803 2exp16 12804 lgsdir2lem1 15549 2lgslem3c 15616 2lgsoddprmlem3d 15631 ex-fac 15738 |
| Copyright terms: Public domain | W3C validator |