| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5cn | GIF version | ||
| Description: The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9197 | . 2 ⊢ 5 ∈ ℝ | |
| 2 | 1 | recni 8166 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 8005 5c5 9172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9177 df-3 9178 df-4 9179 df-5 9180 |
| This theorem is referenced by: 6m1e5 9241 5p2e7 9265 5p3e8 9266 5p4e9 9267 5p5e10 9656 5t2e10 9685 5recm6rec 9729 ef01bndlem 12275 5ndvds3 12453 5ndvds6 12454 dec5dvds 12943 dec5nprm 12945 2exp11 12967 2exp16 12968 lgsdir2lem1 15715 2lgslem3c 15782 2lgsoddprmlem3d 15797 ex-fac 16116 |
| Copyright terms: Public domain | W3C validator |