| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 5cn | GIF version | ||
| Description: The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 5cn | ⊢ 5 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9071 | . 2 ⊢ 5 ∈ ℝ | |
| 2 | 1 | recni 8040 | 1 ⊢ 5 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7879 5c5 9046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9051 df-3 9052 df-4 9053 df-5 9054 |
| This theorem is referenced by: 6m1e5 9115 5p2e7 9139 5p3e8 9140 5p4e9 9141 5p5e10 9529 5t2e10 9558 5recm6rec 9602 ef01bndlem 11923 5ndvds3 12101 5ndvds6 12102 dec5dvds 12591 dec5nprm 12593 2exp11 12615 2exp16 12616 lgsdir2lem1 15279 2lgslem3c 15346 2lgsoddprmlem3d 15361 ex-fac 15384 |
| Copyright terms: Public domain | W3C validator |