![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lgsdir2lem1 | Unicode version |
Description: Lemma for lgsdir2 15190. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsdir2lem1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8995 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | nnq 9701 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() |
4 | 8nn 9152 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | nnq 9701 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() |
7 | 0le1 8502 |
. . . 4
![]() ![]() ![]() ![]() | |
8 | 1lt8 9181 |
. . . 4
![]() ![]() ![]() ![]() | |
9 | modqid 10423 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 3, 6, 7, 8, 9 | mp4an 427 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8cn 9070 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
12 | 11 | mullidi 8024 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | oveq2i 5930 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | ax-1cn 7967 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
15 | 14 | negcli 8289 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
16 | 11, 14 | negsubi 8299 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 8m1e7 9109 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | 16, 17 | eqtri 2214 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 11, 15, 18 | addcomli 8166 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 13, 19 | eqtri 2214 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20 | oveq1i 5929 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | qnegcl 9704 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 3, 22 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
24 | 1z 9346 |
. . . . 5
![]() ![]() ![]() ![]() | |
25 | 8pos 9087 |
. . . . 5
![]() ![]() ![]() ![]() | |
26 | modqcyc 10433 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 23, 24, 6, 25, 26 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 7nn 9151 |
. . . . . 6
![]() ![]() ![]() ![]() | |
29 | nnq 9701 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 28, 29 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() |
31 | 0re 8021 |
. . . . . 6
![]() ![]() ![]() ![]() | |
32 | 7re 9067 |
. . . . . 6
![]() ![]() ![]() ![]() | |
33 | 7pos 9086 |
. . . . . 6
![]() ![]() ![]() ![]() | |
34 | 31, 32, 33 | ltleii 8124 |
. . . . 5
![]() ![]() ![]() ![]() |
35 | 7lt8 9175 |
. . . . 5
![]() ![]() ![]() ![]() | |
36 | modqid 10423 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
37 | 30, 6, 34, 35, 36 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 21, 27, 37 | 3eqtr3i 2222 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 10, 38 | pm3.2i 272 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 3nn 9147 |
. . . . 5
![]() ![]() ![]() ![]() | |
41 | nnq 9701 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
42 | 40, 41 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() |
43 | 3re 9058 |
. . . . 5
![]() ![]() ![]() ![]() | |
44 | 3pos 9078 |
. . . . 5
![]() ![]() ![]() ![]() | |
45 | 31, 43, 44 | ltleii 8124 |
. . . 4
![]() ![]() ![]() ![]() |
46 | 3lt8 9179 |
. . . 4
![]() ![]() ![]() ![]() | |
47 | modqid 10423 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
48 | 42, 6, 45, 46, 47 | mp4an 427 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 12 | oveq2i 5930 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 3cn 9059 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
51 | 50 | negcli 8289 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
52 | 11, 50 | negsubi 8299 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 5cn 9064 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
54 | 5p3e8 9132 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
55 | 53, 50, 54 | addcomli 8166 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 11, 50, 53, 55 | subaddrii 8310 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
57 | 52, 56 | eqtri 2214 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | 11, 51, 57 | addcomli 8166 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
59 | 49, 58 | eqtri 2214 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
60 | 59 | oveq1i 5929 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
61 | qnegcl 9704 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
62 | 42, 61 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
63 | modqcyc 10433 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
64 | 62, 24, 6, 25, 63 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
65 | 5nn 9149 |
. . . . . 6
![]() ![]() ![]() ![]() | |
66 | nnq 9701 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
67 | 65, 66 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() |
68 | 5re 9063 |
. . . . . 6
![]() ![]() ![]() ![]() | |
69 | 5pos 9084 |
. . . . . 6
![]() ![]() ![]() ![]() | |
70 | 31, 68, 69 | ltleii 8124 |
. . . . 5
![]() ![]() ![]() ![]() |
71 | 5lt8 9177 |
. . . . 5
![]() ![]() ![]() ![]() | |
72 | modqid 10423 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
73 | 67, 6, 70, 71, 72 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
74 | 60, 64, 73 | 3eqtr3i 2222 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
75 | 48, 74 | pm3.2i 272 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
76 | 39, 75 | pm3.2i 272 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-n0 9244 df-z 9321 df-q 9688 df-rp 9723 df-fl 10342 df-mod 10397 |
This theorem is referenced by: lgsdir2lem4 15188 lgsdir2lem5 15189 |
Copyright terms: Public domain | W3C validator |