| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdir2lem1 | Unicode version | ||
| Description: Lemma for lgsdir2 15706. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsdir2lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9117 |
. . . . 5
| |
| 2 | nnq 9824 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | 8nn 9274 |
. . . . 5
| |
| 5 | nnq 9824 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | 0le1 8624 |
. . . 4
| |
| 8 | 1lt8 9303 |
. . . 4
| |
| 9 | modqid 10566 |
. . . 4
| |
| 10 | 3, 6, 7, 8, 9 | mp4an 427 |
. . 3
|
| 11 | 8cn 9192 |
. . . . . . . 8
| |
| 12 | 11 | mullidi 8145 |
. . . . . . 7
|
| 13 | 12 | oveq2i 6011 |
. . . . . 6
|
| 14 | ax-1cn 8088 |
. . . . . . . 8
| |
| 15 | 14 | negcli 8410 |
. . . . . . 7
|
| 16 | 11, 14 | negsubi 8420 |
. . . . . . . 8
|
| 17 | 8m1e7 9231 |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtri 2250 |
. . . . . . 7
|
| 19 | 11, 15, 18 | addcomli 8287 |
. . . . . 6
|
| 20 | 13, 19 | eqtri 2250 |
. . . . 5
|
| 21 | 20 | oveq1i 6010 |
. . . 4
|
| 22 | qnegcl 9827 |
. . . . . 6
| |
| 23 | 3, 22 | ax-mp 5 |
. . . . 5
|
| 24 | 1z 9468 |
. . . . 5
| |
| 25 | 8pos 9209 |
. . . . 5
| |
| 26 | modqcyc 10576 |
. . . . 5
| |
| 27 | 23, 24, 6, 25, 26 | mp4an 427 |
. . . 4
|
| 28 | 7nn 9273 |
. . . . . 6
| |
| 29 | nnq 9824 |
. . . . . 6
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . 5
|
| 31 | 0re 8142 |
. . . . . 6
| |
| 32 | 7re 9189 |
. . . . . 6
| |
| 33 | 7pos 9208 |
. . . . . 6
| |
| 34 | 31, 32, 33 | ltleii 8245 |
. . . . 5
|
| 35 | 7lt8 9297 |
. . . . 5
| |
| 36 | modqid 10566 |
. . . . 5
| |
| 37 | 30, 6, 34, 35, 36 | mp4an 427 |
. . . 4
|
| 38 | 21, 27, 37 | 3eqtr3i 2258 |
. . 3
|
| 39 | 10, 38 | pm3.2i 272 |
. 2
|
| 40 | 3nn 9269 |
. . . . 5
| |
| 41 | nnq 9824 |
. . . . 5
| |
| 42 | 40, 41 | ax-mp 5 |
. . . 4
|
| 43 | 3re 9180 |
. . . . 5
| |
| 44 | 3pos 9200 |
. . . . 5
| |
| 45 | 31, 43, 44 | ltleii 8245 |
. . . 4
|
| 46 | 3lt8 9301 |
. . . 4
| |
| 47 | modqid 10566 |
. . . 4
| |
| 48 | 42, 6, 45, 46, 47 | mp4an 427 |
. . 3
|
| 49 | 12 | oveq2i 6011 |
. . . . . 6
|
| 50 | 3cn 9181 |
. . . . . . . 8
| |
| 51 | 50 | negcli 8410 |
. . . . . . 7
|
| 52 | 11, 50 | negsubi 8420 |
. . . . . . . 8
|
| 53 | 5cn 9186 |
. . . . . . . . 9
| |
| 54 | 5p3e8 9254 |
. . . . . . . . . 10
| |
| 55 | 53, 50, 54 | addcomli 8287 |
. . . . . . . . 9
|
| 56 | 11, 50, 53, 55 | subaddrii 8431 |
. . . . . . . 8
|
| 57 | 52, 56 | eqtri 2250 |
. . . . . . 7
|
| 58 | 11, 51, 57 | addcomli 8287 |
. . . . . 6
|
| 59 | 49, 58 | eqtri 2250 |
. . . . 5
|
| 60 | 59 | oveq1i 6010 |
. . . 4
|
| 61 | qnegcl 9827 |
. . . . . 6
| |
| 62 | 42, 61 | ax-mp 5 |
. . . . 5
|
| 63 | modqcyc 10576 |
. . . . 5
| |
| 64 | 62, 24, 6, 25, 63 | mp4an 427 |
. . . 4
|
| 65 | 5nn 9271 |
. . . . . 6
| |
| 66 | nnq 9824 |
. . . . . 6
| |
| 67 | 65, 66 | ax-mp 5 |
. . . . 5
|
| 68 | 5re 9185 |
. . . . . 6
| |
| 69 | 5pos 9206 |
. . . . . 6
| |
| 70 | 31, 68, 69 | ltleii 8245 |
. . . . 5
|
| 71 | 5lt8 9299 |
. . . . 5
| |
| 72 | modqid 10566 |
. . . . 5
| |
| 73 | 67, 6, 70, 71, 72 | mp4an 427 |
. . . 4
|
| 74 | 60, 64, 73 | 3eqtr3i 2258 |
. . 3
|
| 75 | 48, 74 | pm3.2i 272 |
. 2
|
| 76 | 39, 75 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fl 10485 df-mod 10540 |
| This theorem is referenced by: lgsdir2lem4 15704 lgsdir2lem5 15705 |
| Copyright terms: Public domain | W3C validator |