| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdir2lem1 | Unicode version | ||
| Description: Lemma for lgsdir2 15595. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsdir2lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9077 |
. . . . 5
| |
| 2 | nnq 9784 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | 8nn 9234 |
. . . . 5
| |
| 5 | nnq 9784 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | 0le1 8584 |
. . . 4
| |
| 8 | 1lt8 9263 |
. . . 4
| |
| 9 | modqid 10526 |
. . . 4
| |
| 10 | 3, 6, 7, 8, 9 | mp4an 427 |
. . 3
|
| 11 | 8cn 9152 |
. . . . . . . 8
| |
| 12 | 11 | mullidi 8105 |
. . . . . . 7
|
| 13 | 12 | oveq2i 5973 |
. . . . . 6
|
| 14 | ax-1cn 8048 |
. . . . . . . 8
| |
| 15 | 14 | negcli 8370 |
. . . . . . 7
|
| 16 | 11, 14 | negsubi 8380 |
. . . . . . . 8
|
| 17 | 8m1e7 9191 |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtri 2227 |
. . . . . . 7
|
| 19 | 11, 15, 18 | addcomli 8247 |
. . . . . 6
|
| 20 | 13, 19 | eqtri 2227 |
. . . . 5
|
| 21 | 20 | oveq1i 5972 |
. . . 4
|
| 22 | qnegcl 9787 |
. . . . . 6
| |
| 23 | 3, 22 | ax-mp 5 |
. . . . 5
|
| 24 | 1z 9428 |
. . . . 5
| |
| 25 | 8pos 9169 |
. . . . 5
| |
| 26 | modqcyc 10536 |
. . . . 5
| |
| 27 | 23, 24, 6, 25, 26 | mp4an 427 |
. . . 4
|
| 28 | 7nn 9233 |
. . . . . 6
| |
| 29 | nnq 9784 |
. . . . . 6
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . 5
|
| 31 | 0re 8102 |
. . . . . 6
| |
| 32 | 7re 9149 |
. . . . . 6
| |
| 33 | 7pos 9168 |
. . . . . 6
| |
| 34 | 31, 32, 33 | ltleii 8205 |
. . . . 5
|
| 35 | 7lt8 9257 |
. . . . 5
| |
| 36 | modqid 10526 |
. . . . 5
| |
| 37 | 30, 6, 34, 35, 36 | mp4an 427 |
. . . 4
|
| 38 | 21, 27, 37 | 3eqtr3i 2235 |
. . 3
|
| 39 | 10, 38 | pm3.2i 272 |
. 2
|
| 40 | 3nn 9229 |
. . . . 5
| |
| 41 | nnq 9784 |
. . . . 5
| |
| 42 | 40, 41 | ax-mp 5 |
. . . 4
|
| 43 | 3re 9140 |
. . . . 5
| |
| 44 | 3pos 9160 |
. . . . 5
| |
| 45 | 31, 43, 44 | ltleii 8205 |
. . . 4
|
| 46 | 3lt8 9261 |
. . . 4
| |
| 47 | modqid 10526 |
. . . 4
| |
| 48 | 42, 6, 45, 46, 47 | mp4an 427 |
. . 3
|
| 49 | 12 | oveq2i 5973 |
. . . . . 6
|
| 50 | 3cn 9141 |
. . . . . . . 8
| |
| 51 | 50 | negcli 8370 |
. . . . . . 7
|
| 52 | 11, 50 | negsubi 8380 |
. . . . . . . 8
|
| 53 | 5cn 9146 |
. . . . . . . . 9
| |
| 54 | 5p3e8 9214 |
. . . . . . . . . 10
| |
| 55 | 53, 50, 54 | addcomli 8247 |
. . . . . . . . 9
|
| 56 | 11, 50, 53, 55 | subaddrii 8391 |
. . . . . . . 8
|
| 57 | 52, 56 | eqtri 2227 |
. . . . . . 7
|
| 58 | 11, 51, 57 | addcomli 8247 |
. . . . . 6
|
| 59 | 49, 58 | eqtri 2227 |
. . . . 5
|
| 60 | 59 | oveq1i 5972 |
. . . 4
|
| 61 | qnegcl 9787 |
. . . . . 6
| |
| 62 | 42, 61 | ax-mp 5 |
. . . . 5
|
| 63 | modqcyc 10536 |
. . . . 5
| |
| 64 | 62, 24, 6, 25, 63 | mp4an 427 |
. . . 4
|
| 65 | 5nn 9231 |
. . . . . 6
| |
| 66 | nnq 9784 |
. . . . . 6
| |
| 67 | 65, 66 | ax-mp 5 |
. . . . 5
|
| 68 | 5re 9145 |
. . . . . 6
| |
| 69 | 5pos 9166 |
. . . . . 6
| |
| 70 | 31, 68, 69 | ltleii 8205 |
. . . . 5
|
| 71 | 5lt8 9259 |
. . . . 5
| |
| 72 | modqid 10526 |
. . . . 5
| |
| 73 | 67, 6, 70, 71, 72 | mp4an 427 |
. . . 4
|
| 74 | 60, 64, 73 | 3eqtr3i 2235 |
. . 3
|
| 75 | 48, 74 | pm3.2i 272 |
. 2
|
| 76 | 39, 75 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-n0 9326 df-z 9403 df-q 9771 df-rp 9806 df-fl 10445 df-mod 10500 |
| This theorem is referenced by: lgsdir2lem4 15593 lgsdir2lem5 15594 |
| Copyright terms: Public domain | W3C validator |