Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgsdir2lem1 | Unicode version |
Description: Lemma for lgsdir2 14014. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsdir2lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8903 | . . . . 5 | |
2 | nnq 9606 | . . . . 5 | |
3 | 1, 2 | ax-mp 5 | . . . 4 |
4 | 8nn 9059 | . . . . 5 | |
5 | nnq 9606 | . . . . 5 | |
6 | 4, 5 | ax-mp 5 | . . . 4 |
7 | 0le1 8412 | . . . 4 | |
8 | 1lt8 9088 | . . . 4 | |
9 | modqid 10319 | . . . 4 | |
10 | 3, 6, 7, 8, 9 | mp4an 427 | . . 3 |
11 | 8cn 8978 | . . . . . . . 8 | |
12 | 11 | mulid2i 7935 | . . . . . . 7 |
13 | 12 | oveq2i 5876 | . . . . . 6 |
14 | ax-1cn 7879 | . . . . . . . 8 | |
15 | 14 | negcli 8199 | . . . . . . 7 |
16 | 11, 14 | negsubi 8209 | . . . . . . . 8 |
17 | 8m1e7 9017 | . . . . . . . 8 | |
18 | 16, 17 | eqtri 2196 | . . . . . . 7 |
19 | 11, 15, 18 | addcomli 8076 | . . . . . 6 |
20 | 13, 19 | eqtri 2196 | . . . . 5 |
21 | 20 | oveq1i 5875 | . . . 4 |
22 | qnegcl 9609 | . . . . . 6 | |
23 | 3, 22 | ax-mp 5 | . . . . 5 |
24 | 1z 9252 | . . . . 5 | |
25 | 8pos 8995 | . . . . 5 | |
26 | modqcyc 10329 | . . . . 5 | |
27 | 23, 24, 6, 25, 26 | mp4an 427 | . . . 4 |
28 | 7nn 9058 | . . . . . 6 | |
29 | nnq 9606 | . . . . . 6 | |
30 | 28, 29 | ax-mp 5 | . . . . 5 |
31 | 0re 7932 | . . . . . 6 | |
32 | 7re 8975 | . . . . . 6 | |
33 | 7pos 8994 | . . . . . 6 | |
34 | 31, 32, 33 | ltleii 8034 | . . . . 5 |
35 | 7lt8 9082 | . . . . 5 | |
36 | modqid 10319 | . . . . 5 | |
37 | 30, 6, 34, 35, 36 | mp4an 427 | . . . 4 |
38 | 21, 27, 37 | 3eqtr3i 2204 | . . 3 |
39 | 10, 38 | pm3.2i 272 | . 2 |
40 | 3nn 9054 | . . . . 5 | |
41 | nnq 9606 | . . . . 5 | |
42 | 40, 41 | ax-mp 5 | . . . 4 |
43 | 3re 8966 | . . . . 5 | |
44 | 3pos 8986 | . . . . 5 | |
45 | 31, 43, 44 | ltleii 8034 | . . . 4 |
46 | 3lt8 9086 | . . . 4 | |
47 | modqid 10319 | . . . 4 | |
48 | 42, 6, 45, 46, 47 | mp4an 427 | . . 3 |
49 | 12 | oveq2i 5876 | . . . . . 6 |
50 | 3cn 8967 | . . . . . . . 8 | |
51 | 50 | negcli 8199 | . . . . . . 7 |
52 | 11, 50 | negsubi 8209 | . . . . . . . 8 |
53 | 5cn 8972 | . . . . . . . . 9 | |
54 | 5p3e8 9039 | . . . . . . . . . 10 | |
55 | 53, 50, 54 | addcomli 8076 | . . . . . . . . 9 |
56 | 11, 50, 53, 55 | subaddrii 8220 | . . . . . . . 8 |
57 | 52, 56 | eqtri 2196 | . . . . . . 7 |
58 | 11, 51, 57 | addcomli 8076 | . . . . . 6 |
59 | 49, 58 | eqtri 2196 | . . . . 5 |
60 | 59 | oveq1i 5875 | . . . 4 |
61 | qnegcl 9609 | . . . . . 6 | |
62 | 42, 61 | ax-mp 5 | . . . . 5 |
63 | modqcyc 10329 | . . . . 5 | |
64 | 62, 24, 6, 25, 63 | mp4an 427 | . . . 4 |
65 | 5nn 9056 | . . . . . 6 | |
66 | nnq 9606 | . . . . . 6 | |
67 | 65, 66 | ax-mp 5 | . . . . 5 |
68 | 5re 8971 | . . . . . 6 | |
69 | 5pos 8992 | . . . . . 6 | |
70 | 31, 68, 69 | ltleii 8034 | . . . . 5 |
71 | 5lt8 9084 | . . . . 5 | |
72 | modqid 10319 | . . . . 5 | |
73 | 67, 6, 70, 71, 72 | mp4an 427 | . . . 4 |
74 | 60, 64, 73 | 3eqtr3i 2204 | . . 3 |
75 | 48, 74 | pm3.2i 272 | . 2 |
76 | 39, 75 | pm3.2i 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wcel 2146 class class class wbr 3998 (class class class)co 5865 cc0 7786 c1 7787 caddc 7789 cmul 7791 clt 7966 cle 7967 cmin 8102 cneg 8103 cn 8892 c3 8944 c5 8946 c7 8948 c8 8949 cz 9226 cq 9592 cmo 10292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-n0 9150 df-z 9227 df-q 9593 df-rp 9625 df-fl 10240 df-mod 10293 |
This theorem is referenced by: lgsdir2lem4 14012 lgsdir2lem5 14013 |
Copyright terms: Public domain | W3C validator |