| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsdir2lem1 | Unicode version | ||
| Description: Lemma for lgsdir2 15510. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsdir2lem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9047 |
. . . . 5
| |
| 2 | nnq 9754 |
. . . . 5
| |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
|
| 4 | 8nn 9204 |
. . . . 5
| |
| 5 | nnq 9754 |
. . . . 5
| |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
|
| 7 | 0le1 8554 |
. . . 4
| |
| 8 | 1lt8 9233 |
. . . 4
| |
| 9 | modqid 10494 |
. . . 4
| |
| 10 | 3, 6, 7, 8, 9 | mp4an 427 |
. . 3
|
| 11 | 8cn 9122 |
. . . . . . . 8
| |
| 12 | 11 | mullidi 8075 |
. . . . . . 7
|
| 13 | 12 | oveq2i 5955 |
. . . . . 6
|
| 14 | ax-1cn 8018 |
. . . . . . . 8
| |
| 15 | 14 | negcli 8340 |
. . . . . . 7
|
| 16 | 11, 14 | negsubi 8350 |
. . . . . . . 8
|
| 17 | 8m1e7 9161 |
. . . . . . . 8
| |
| 18 | 16, 17 | eqtri 2226 |
. . . . . . 7
|
| 19 | 11, 15, 18 | addcomli 8217 |
. . . . . 6
|
| 20 | 13, 19 | eqtri 2226 |
. . . . 5
|
| 21 | 20 | oveq1i 5954 |
. . . 4
|
| 22 | qnegcl 9757 |
. . . . . 6
| |
| 23 | 3, 22 | ax-mp 5 |
. . . . 5
|
| 24 | 1z 9398 |
. . . . 5
| |
| 25 | 8pos 9139 |
. . . . 5
| |
| 26 | modqcyc 10504 |
. . . . 5
| |
| 27 | 23, 24, 6, 25, 26 | mp4an 427 |
. . . 4
|
| 28 | 7nn 9203 |
. . . . . 6
| |
| 29 | nnq 9754 |
. . . . . 6
| |
| 30 | 28, 29 | ax-mp 5 |
. . . . 5
|
| 31 | 0re 8072 |
. . . . . 6
| |
| 32 | 7re 9119 |
. . . . . 6
| |
| 33 | 7pos 9138 |
. . . . . 6
| |
| 34 | 31, 32, 33 | ltleii 8175 |
. . . . 5
|
| 35 | 7lt8 9227 |
. . . . 5
| |
| 36 | modqid 10494 |
. . . . 5
| |
| 37 | 30, 6, 34, 35, 36 | mp4an 427 |
. . . 4
|
| 38 | 21, 27, 37 | 3eqtr3i 2234 |
. . 3
|
| 39 | 10, 38 | pm3.2i 272 |
. 2
|
| 40 | 3nn 9199 |
. . . . 5
| |
| 41 | nnq 9754 |
. . . . 5
| |
| 42 | 40, 41 | ax-mp 5 |
. . . 4
|
| 43 | 3re 9110 |
. . . . 5
| |
| 44 | 3pos 9130 |
. . . . 5
| |
| 45 | 31, 43, 44 | ltleii 8175 |
. . . 4
|
| 46 | 3lt8 9231 |
. . . 4
| |
| 47 | modqid 10494 |
. . . 4
| |
| 48 | 42, 6, 45, 46, 47 | mp4an 427 |
. . 3
|
| 49 | 12 | oveq2i 5955 |
. . . . . 6
|
| 50 | 3cn 9111 |
. . . . . . . 8
| |
| 51 | 50 | negcli 8340 |
. . . . . . 7
|
| 52 | 11, 50 | negsubi 8350 |
. . . . . . . 8
|
| 53 | 5cn 9116 |
. . . . . . . . 9
| |
| 54 | 5p3e8 9184 |
. . . . . . . . . 10
| |
| 55 | 53, 50, 54 | addcomli 8217 |
. . . . . . . . 9
|
| 56 | 11, 50, 53, 55 | subaddrii 8361 |
. . . . . . . 8
|
| 57 | 52, 56 | eqtri 2226 |
. . . . . . 7
|
| 58 | 11, 51, 57 | addcomli 8217 |
. . . . . 6
|
| 59 | 49, 58 | eqtri 2226 |
. . . . 5
|
| 60 | 59 | oveq1i 5954 |
. . . 4
|
| 61 | qnegcl 9757 |
. . . . . 6
| |
| 62 | 42, 61 | ax-mp 5 |
. . . . 5
|
| 63 | modqcyc 10504 |
. . . . 5
| |
| 64 | 62, 24, 6, 25, 63 | mp4an 427 |
. . . 4
|
| 65 | 5nn 9201 |
. . . . . 6
| |
| 66 | nnq 9754 |
. . . . . 6
| |
| 67 | 65, 66 | ax-mp 5 |
. . . . 5
|
| 68 | 5re 9115 |
. . . . . 6
| |
| 69 | 5pos 9136 |
. . . . . 6
| |
| 70 | 31, 68, 69 | ltleii 8175 |
. . . . 5
|
| 71 | 5lt8 9229 |
. . . . 5
| |
| 72 | modqid 10494 |
. . . . 5
| |
| 73 | 67, 6, 70, 71, 72 | mp4an 427 |
. . . 4
|
| 74 | 60, 64, 73 | 3eqtr3i 2234 |
. . 3
|
| 75 | 48, 74 | pm3.2i 272 |
. 2
|
| 76 | 39, 75 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 df-mod 10468 |
| This theorem is referenced by: lgsdir2lem4 15508 lgsdir2lem5 15509 |
| Copyright terms: Public domain | W3C validator |