Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lgsdir2lem1 | Unicode version |
Description: Lemma for lgsdir2 13534. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsdir2lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8864 | . . . . 5 | |
2 | nnq 9567 | . . . . 5 | |
3 | 1, 2 | ax-mp 5 | . . . 4 |
4 | 8nn 9020 | . . . . 5 | |
5 | nnq 9567 | . . . . 5 | |
6 | 4, 5 | ax-mp 5 | . . . 4 |
7 | 0le1 8375 | . . . 4 | |
8 | 1lt8 9049 | . . . 4 | |
9 | modqid 10280 | . . . 4 | |
10 | 3, 6, 7, 8, 9 | mp4an 424 | . . 3 |
11 | 8cn 8939 | . . . . . . . 8 | |
12 | 11 | mulid2i 7898 | . . . . . . 7 |
13 | 12 | oveq2i 5852 | . . . . . 6 |
14 | ax-1cn 7842 | . . . . . . . 8 | |
15 | 14 | negcli 8162 | . . . . . . 7 |
16 | 11, 14 | negsubi 8172 | . . . . . . . 8 |
17 | 8m1e7 8978 | . . . . . . . 8 | |
18 | 16, 17 | eqtri 2186 | . . . . . . 7 |
19 | 11, 15, 18 | addcomli 8039 | . . . . . 6 |
20 | 13, 19 | eqtri 2186 | . . . . 5 |
21 | 20 | oveq1i 5851 | . . . 4 |
22 | qnegcl 9570 | . . . . . 6 | |
23 | 3, 22 | ax-mp 5 | . . . . 5 |
24 | 1z 9213 | . . . . 5 | |
25 | 8pos 8956 | . . . . 5 | |
26 | modqcyc 10290 | . . . . 5 | |
27 | 23, 24, 6, 25, 26 | mp4an 424 | . . . 4 |
28 | 7nn 9019 | . . . . . 6 | |
29 | nnq 9567 | . . . . . 6 | |
30 | 28, 29 | ax-mp 5 | . . . . 5 |
31 | 0re 7895 | . . . . . 6 | |
32 | 7re 8936 | . . . . . 6 | |
33 | 7pos 8955 | . . . . . 6 | |
34 | 31, 32, 33 | ltleii 7997 | . . . . 5 |
35 | 7lt8 9043 | . . . . 5 | |
36 | modqid 10280 | . . . . 5 | |
37 | 30, 6, 34, 35, 36 | mp4an 424 | . . . 4 |
38 | 21, 27, 37 | 3eqtr3i 2194 | . . 3 |
39 | 10, 38 | pm3.2i 270 | . 2 |
40 | 3nn 9015 | . . . . 5 | |
41 | nnq 9567 | . . . . 5 | |
42 | 40, 41 | ax-mp 5 | . . . 4 |
43 | 3re 8927 | . . . . 5 | |
44 | 3pos 8947 | . . . . 5 | |
45 | 31, 43, 44 | ltleii 7997 | . . . 4 |
46 | 3lt8 9047 | . . . 4 | |
47 | modqid 10280 | . . . 4 | |
48 | 42, 6, 45, 46, 47 | mp4an 424 | . . 3 |
49 | 12 | oveq2i 5852 | . . . . . 6 |
50 | 3cn 8928 | . . . . . . . 8 | |
51 | 50 | negcli 8162 | . . . . . . 7 |
52 | 11, 50 | negsubi 8172 | . . . . . . . 8 |
53 | 5cn 8933 | . . . . . . . . 9 | |
54 | 5p3e8 9000 | . . . . . . . . . 10 | |
55 | 53, 50, 54 | addcomli 8039 | . . . . . . . . 9 |
56 | 11, 50, 53, 55 | subaddrii 8183 | . . . . . . . 8 |
57 | 52, 56 | eqtri 2186 | . . . . . . 7 |
58 | 11, 51, 57 | addcomli 8039 | . . . . . 6 |
59 | 49, 58 | eqtri 2186 | . . . . 5 |
60 | 59 | oveq1i 5851 | . . . 4 |
61 | qnegcl 9570 | . . . . . 6 | |
62 | 42, 61 | ax-mp 5 | . . . . 5 |
63 | modqcyc 10290 | . . . . 5 | |
64 | 62, 24, 6, 25, 63 | mp4an 424 | . . . 4 |
65 | 5nn 9017 | . . . . . 6 | |
66 | nnq 9567 | . . . . . 6 | |
67 | 65, 66 | ax-mp 5 | . . . . 5 |
68 | 5re 8932 | . . . . . 6 | |
69 | 5pos 8953 | . . . . . 6 | |
70 | 31, 68, 69 | ltleii 7997 | . . . . 5 |
71 | 5lt8 9045 | . . . . 5 | |
72 | modqid 10280 | . . . . 5 | |
73 | 67, 6, 70, 71, 72 | mp4an 424 | . . . 4 |
74 | 60, 64, 73 | 3eqtr3i 2194 | . . 3 |
75 | 48, 74 | pm3.2i 270 | . 2 |
76 | 39, 75 | pm3.2i 270 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wcel 2136 class class class wbr 3981 (class class class)co 5841 cc0 7749 c1 7750 caddc 7752 cmul 7754 clt 7929 cle 7930 cmin 8065 cneg 8066 cn 8853 c3 8905 c5 8907 c7 8909 c8 8910 cz 9187 cq 9553 cmo 10253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-5 8915 df-6 8916 df-7 8917 df-8 8918 df-n0 9111 df-z 9188 df-q 9554 df-rp 9586 df-fl 10201 df-mod 10254 |
This theorem is referenced by: lgsdir2lem4 13532 lgsdir2lem5 13533 |
Copyright terms: Public domain | W3C validator |