![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lgsdir2lem1 | Unicode version |
Description: Lemma for lgsdir2 14437. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsdir2lem1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8930 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | nnq 9633 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() |
4 | 8nn 9086 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | nnq 9633 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() |
7 | 0le1 8438 |
. . . 4
![]() ![]() ![]() ![]() | |
8 | 1lt8 9115 |
. . . 4
![]() ![]() ![]() ![]() | |
9 | modqid 10349 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 3, 6, 7, 8, 9 | mp4an 427 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8cn 9005 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
12 | 11 | mullidi 7960 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | oveq2i 5886 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | ax-1cn 7904 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
15 | 14 | negcli 8225 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
16 | 11, 14 | negsubi 8235 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 8m1e7 9044 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | 16, 17 | eqtri 2198 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 11, 15, 18 | addcomli 8102 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 13, 19 | eqtri 2198 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20 | oveq1i 5885 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | qnegcl 9636 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 3, 22 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
24 | 1z 9279 |
. . . . 5
![]() ![]() ![]() ![]() | |
25 | 8pos 9022 |
. . . . 5
![]() ![]() ![]() ![]() | |
26 | modqcyc 10359 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 23, 24, 6, 25, 26 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 7nn 9085 |
. . . . . 6
![]() ![]() ![]() ![]() | |
29 | nnq 9633 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 28, 29 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() |
31 | 0re 7957 |
. . . . . 6
![]() ![]() ![]() ![]() | |
32 | 7re 9002 |
. . . . . 6
![]() ![]() ![]() ![]() | |
33 | 7pos 9021 |
. . . . . 6
![]() ![]() ![]() ![]() | |
34 | 31, 32, 33 | ltleii 8060 |
. . . . 5
![]() ![]() ![]() ![]() |
35 | 7lt8 9109 |
. . . . 5
![]() ![]() ![]() ![]() | |
36 | modqid 10349 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
37 | 30, 6, 34, 35, 36 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 21, 27, 37 | 3eqtr3i 2206 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 10, 38 | pm3.2i 272 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 3nn 9081 |
. . . . 5
![]() ![]() ![]() ![]() | |
41 | nnq 9633 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
42 | 40, 41 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() |
43 | 3re 8993 |
. . . . 5
![]() ![]() ![]() ![]() | |
44 | 3pos 9013 |
. . . . 5
![]() ![]() ![]() ![]() | |
45 | 31, 43, 44 | ltleii 8060 |
. . . 4
![]() ![]() ![]() ![]() |
46 | 3lt8 9113 |
. . . 4
![]() ![]() ![]() ![]() | |
47 | modqid 10349 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
48 | 42, 6, 45, 46, 47 | mp4an 427 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 12 | oveq2i 5886 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 3cn 8994 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
51 | 50 | negcli 8225 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
52 | 11, 50 | negsubi 8235 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 5cn 8999 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
54 | 5p3e8 9066 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
55 | 53, 50, 54 | addcomli 8102 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
56 | 11, 50, 53, 55 | subaddrii 8246 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
57 | 52, 56 | eqtri 2198 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | 11, 51, 57 | addcomli 8102 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
59 | 49, 58 | eqtri 2198 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
60 | 59 | oveq1i 5885 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
61 | qnegcl 9636 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
62 | 42, 61 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
63 | modqcyc 10359 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
64 | 62, 24, 6, 25, 63 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
65 | 5nn 9083 |
. . . . . 6
![]() ![]() ![]() ![]() | |
66 | nnq 9633 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
67 | 65, 66 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() ![]() |
68 | 5re 8998 |
. . . . . 6
![]() ![]() ![]() ![]() | |
69 | 5pos 9019 |
. . . . . 6
![]() ![]() ![]() ![]() | |
70 | 31, 68, 69 | ltleii 8060 |
. . . . 5
![]() ![]() ![]() ![]() |
71 | 5lt8 9111 |
. . . . 5
![]() ![]() ![]() ![]() | |
72 | modqid 10349 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
73 | 67, 6, 70, 71, 72 | mp4an 427 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
74 | 60, 64, 73 | 3eqtr3i 2206 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
75 | 48, 74 | pm3.2i 272 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
76 | 39, 75 | pm3.2i 272 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-po 4297 df-iso 4298 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-3 8979 df-4 8980 df-5 8981 df-6 8982 df-7 8983 df-8 8984 df-n0 9177 df-z 9254 df-q 9620 df-rp 9654 df-fl 10270 df-mod 10323 |
This theorem is referenced by: lgsdir2lem4 14435 lgsdir2lem5 14436 |
Copyright terms: Public domain | W3C validator |