ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p4e9 Unicode version

Theorem 5p4e9 9130
Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p4e9  |-  ( 5  +  4 )  =  9

Proof of Theorem 5p4e9
StepHypRef Expression
1 df-4 9043 . . . 4  |-  4  =  ( 3  +  1 )
21oveq2i 5929 . . 3  |-  ( 5  +  4 )  =  ( 5  +  ( 3  +  1 ) )
3 5cn 9062 . . . 4  |-  5  e.  CC
4 3cn 9057 . . . 4  |-  3  e.  CC
5 ax-1cn 7965 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8027 . . 3  |-  ( ( 5  +  3 )  +  1 )  =  ( 5  +  ( 3  +  1 ) )
72, 6eqtr4i 2217 . 2  |-  ( 5  +  4 )  =  ( ( 5  +  3 )  +  1 )
8 df-9 9048 . . 3  |-  9  =  ( 8  +  1 )
9 5p3e8 9129 . . . 4  |-  ( 5  +  3 )  =  8
109oveq1i 5928 . . 3  |-  ( ( 5  +  3 )  +  1 )  =  ( 8  +  1 )
118, 10eqtr4i 2217 . 2  |-  9  =  ( ( 5  +  3 )  +  1 )
127, 11eqtr4i 2217 1  |-  ( 5  +  4 )  =  9
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5918   1c1 7873    + caddc 7875   3c3 9034   4c4 9035   5c5 9036   8c8 9039   9c9 9040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-addrcl 7969  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048
This theorem is referenced by:  5p5e10  9518
  Copyright terms: Public domain W3C validator