ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p2e7 Unicode version

Theorem 5p2e7 9067
Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
5p2e7  |-  ( 5  +  2 )  =  7

Proof of Theorem 5p2e7
StepHypRef Expression
1 df-2 8980 . . . . 5  |-  2  =  ( 1  +  1 )
21oveq2i 5888 . . . 4  |-  ( 5  +  2 )  =  ( 5  +  ( 1  +  1 ) )
3 5cn 9001 . . . . 5  |-  5  e.  CC
4 ax-1cn 7906 . . . . 5  |-  1  e.  CC
53, 4, 4addassi 7967 . . . 4  |-  ( ( 5  +  1 )  +  1 )  =  ( 5  +  ( 1  +  1 ) )
62, 5eqtr4i 2201 . . 3  |-  ( 5  +  2 )  =  ( ( 5  +  1 )  +  1 )
7 df-6 8984 . . . 4  |-  6  =  ( 5  +  1 )
87oveq1i 5887 . . 3  |-  ( 6  +  1 )  =  ( ( 5  +  1 )  +  1 )
96, 8eqtr4i 2201 . 2  |-  ( 5  +  2 )  =  ( 6  +  1 )
10 df-7 8985 . 2  |-  7  =  ( 6  +  1 )
119, 10eqtr4i 2201 1  |-  ( 5  +  2 )  =  7
Colors of variables: wff set class
Syntax hints:    = wceq 1353  (class class class)co 5877   1c1 7814    + caddc 7816   2c2 8972   5c5 8975   6c6 8976   7c7 8977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-addrcl 7910  ax-addass 7915
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985
This theorem is referenced by:  5p3e8  9068
  Copyright terms: Public domain W3C validator