![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5p2e7 | Unicode version |
Description: 5 + 2 = 7. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
5p2e7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8976 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5885 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 5cn 8997 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | ax-1cn 7903 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 3, 4, 4 | addassi 7964 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | eqtr4i 2201 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | df-6 8980 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | oveq1i 5884 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6, 8 | eqtr4i 2201 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | df-7 8981 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 9, 10 | eqtr4i 2201 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-addrcl 7907 ax-addass 7912 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-iota 5178 df-fv 5224 df-ov 5877 df-2 8976 df-3 8977 df-4 8978 df-5 8979 df-6 8980 df-7 8981 |
This theorem is referenced by: 5p3e8 9064 |
Copyright terms: Public domain | W3C validator |