ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  5p5e10 Unicode version

Theorem 5p5e10 9576
Description: 5 + 5 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
5p5e10  |-  ( 5  +  5 )  = ; 1
0

Proof of Theorem 5p5e10
StepHypRef Expression
1 df-5 9100 . . . 4  |-  5  =  ( 4  +  1 )
21oveq2i 5957 . . 3  |-  ( 5  +  5 )  =  ( 5  +  ( 4  +  1 ) )
3 5cn 9118 . . . 4  |-  5  e.  CC
4 4cn 9116 . . . 4  |-  4  e.  CC
5 ax-1cn 8020 . . . 4  |-  1  e.  CC
63, 4, 5addassi 8082 . . 3  |-  ( ( 5  +  4 )  +  1 )  =  ( 5  +  ( 4  +  1 ) )
72, 6eqtr4i 2229 . 2  |-  ( 5  +  5 )  =  ( ( 5  +  4 )  +  1 )
8 5p4e9 9187 . . 3  |-  ( 5  +  4 )  =  9
98oveq1i 5956 . 2  |-  ( ( 5  +  4 )  +  1 )  =  ( 9  +  1 )
10 9p1e10 9508 . 2  |-  ( 9  +  1 )  = ; 1
0
117, 9, 103eqtri 2230 1  |-  ( 5  +  5 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5946   0cc0 7927   1c1 7928    + caddc 7930   4c4 9091   5c5 9092   9c9 9096  ;cdc 9506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-1rid 8034  ax-0id 8035  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-9 9104  df-dec 9507
This theorem is referenced by:  5t2e10  9605  5t4e20  9607
  Copyright terms: Public domain W3C validator