ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 9092
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9073 . 2  |-  7  =  ( 6  +  1 )
2 6re 9090 . . 3  |-  6  e.  RR
3 1re 8044 . . 3  |-  1  e.  RR
42, 3readdcli 8058 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2269 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2167  (class class class)co 5925   RRcr 7897   1c1 7899    + caddc 7901   6c6 9064   7c7 9065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073
This theorem is referenced by:  7cn  9093  8re  9094  8pos  9112  5lt7  9195  4lt7  9196  3lt7  9197  2lt7  9198  1lt7  9199  7lt8  9200  6lt8  9201  7lt9  9208  6lt9  9209  7lt10  9608  6lt10  9609  lgsdir2lem1  15377
  Copyright terms: Public domain W3C validator