ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 9005
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 8986 . 2  |-  7  =  ( 6  +  1 )
2 6re 9003 . . 3  |-  6  e.  RR
3 1re 7959 . . 3  |-  1  e.  RR
42, 3readdcli 7973 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2250 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2148  (class class class)co 5878   RRcr 7813   1c1 7815    + caddc 7817   6c6 8977   7c7 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159  ax-1re 7908  ax-addrcl 7911
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986
This theorem is referenced by:  7cn  9006  8re  9007  8pos  9025  5lt7  9107  4lt7  9108  3lt7  9109  2lt7  9110  1lt7  9111  7lt8  9112  6lt8  9113  7lt9  9120  6lt9  9121  7lt10  9519  6lt10  9520  lgsdir2lem1  14617
  Copyright terms: Public domain W3C validator