ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 9065
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9046 . 2  |-  7  =  ( 6  +  1 )
2 6re 9063 . . 3  |-  6  e.  RR
3 1re 8018 . . 3  |-  1  e.  RR
42, 3readdcli 8032 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2266 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2164  (class class class)co 5918   RRcr 7871   1c1 7873    + caddc 7875   6c6 9037   7c7 9038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046
This theorem is referenced by:  7cn  9066  8re  9067  8pos  9085  5lt7  9167  4lt7  9168  3lt7  9169  2lt7  9170  1lt7  9171  7lt8  9172  6lt8  9173  7lt9  9180  6lt9  9181  7lt10  9580  6lt10  9581  lgsdir2lem1  15144
  Copyright terms: Public domain W3C validator