ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 8961
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 8942 . 2  |-  7  =  ( 6  +  1 )
2 6re 8959 . . 3  |-  6  e.  RR
3 1re 7919 . . 3  |-  1  e.  RR
42, 3readdcli 7933 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2243 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2141  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777   6c6 8933   7c7 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942
This theorem is referenced by:  7cn  8962  8re  8963  8pos  8981  5lt7  9063  4lt7  9064  3lt7  9065  2lt7  9066  1lt7  9067  7lt8  9068  6lt8  9069  7lt9  9076  6lt9  9077  7lt10  9475  6lt10  9476  lgsdir2lem1  13723
  Copyright terms: Public domain W3C validator