ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 8940
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 8921 . 2  |-  7  =  ( 6  +  1 )
2 6re 8938 . . 3  |-  6  e.  RR
3 1re 7898 . . 3  |-  1  e.  RR
42, 3readdcli 7912 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2239 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2136  (class class class)co 5842   RRcr 7752   1c1 7754    + caddc 7756   6c6 8912   7c7 8913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921
This theorem is referenced by:  7cn  8941  8re  8942  8pos  8960  5lt7  9042  4lt7  9043  3lt7  9044  2lt7  9045  1lt7  9046  7lt8  9047  6lt8  9048  7lt9  9055  6lt9  9056  7lt10  9454  6lt10  9455  lgsdir2lem1  13569
  Copyright terms: Public domain W3C validator