ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 9121
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9102 . 2  |-  7  =  ( 6  +  1 )
2 6re 9119 . . 3  |-  6  e.  RR
3 1re 8073 . . 3  |-  1  e.  RR
42, 3readdcli 8087 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2278 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2176  (class class class)co 5946   RRcr 7926   1c1 7928    + caddc 7930   6c6 9093   7c7 9094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102
This theorem is referenced by:  7cn  9122  8re  9123  8pos  9141  5lt7  9224  4lt7  9225  3lt7  9226  2lt7  9227  1lt7  9228  7lt8  9229  6lt8  9230  7lt9  9237  6lt9  9238  7lt10  9638  6lt10  9639  lgsdir2lem1  15538
  Copyright terms: Public domain W3C validator