ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 9193
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9174 . 2  |-  7  =  ( 6  +  1 )
2 6re 9191 . . 3  |-  6  e.  RR
3 1re 8145 . . 3  |-  1  e.  RR
42, 3readdcli 8159 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2302 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2200  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002   6c6 9165   7c7 9166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174
This theorem is referenced by:  7cn  9194  8re  9195  8pos  9213  5lt7  9296  4lt7  9297  3lt7  9298  2lt7  9299  1lt7  9300  7lt8  9301  6lt8  9302  7lt9  9309  6lt9  9310  7lt10  9710  6lt10  9711  lgsdir2lem1  15707
  Copyright terms: Public domain W3C validator