ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7re Unicode version

Theorem 7re 9076
Description: The number 7 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7re  |-  7  e.  RR

Proof of Theorem 7re
StepHypRef Expression
1 df-7 9057 . 2  |-  7  =  ( 6  +  1 )
2 6re 9074 . . 3  |-  6  e.  RR
3 1re 8028 . . 3  |-  1  e.  RR
42, 3readdcli 8042 . 2  |-  ( 6  +  1 )  e.  RR
51, 4eqeltri 2269 1  |-  7  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2167  (class class class)co 5923   RRcr 7881   1c1 7883    + caddc 7885   6c6 9048   7c7 9049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1re 7976  ax-addrcl 7979
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192  df-2 9052  df-3 9053  df-4 9054  df-5 9055  df-6 9056  df-7 9057
This theorem is referenced by:  7cn  9077  8re  9078  8pos  9096  5lt7  9179  4lt7  9180  3lt7  9181  2lt7  9182  1lt7  9183  7lt8  9184  6lt8  9185  7lt9  9192  6lt9  9193  7lt10  9592  6lt10  9593  lgsdir2lem1  15295
  Copyright terms: Public domain W3C validator