| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8pos | Unicode version | ||
| Description: The number 8 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8pos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7re 9073 |
. . 3
| |
| 2 | 1re 8025 |
. . 3
| |
| 3 | 7pos 9092 |
. . 3
| |
| 4 | 0lt1 8153 |
. . 3
| |
| 5 | 1, 2, 3, 4 | addgt0ii 8518 |
. 2
|
| 6 | df-8 9055 |
. 2
| |
| 7 | 5, 6 | breqtrri 4060 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4033 (class class class)co 5922
|
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 |
| This theorem is referenced by: 9pos 9094 8th4div3 9210 lgsdir2lem1 15269 lgsdir2lem4 15272 lgsdir2lem5 15273 2lgslem3a1 15338 2lgslem3b1 15339 2lgslem3c1 15340 2lgsoddprmlem1 15346 2lgsoddprmlem2 15347 2lgsoddprmlem3a 15348 2lgsoddprmlem3b 15349 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 |
| Copyright terms: Public domain | W3C validator |