| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | Unicode version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9103 |
. 2
| |
| 2 | 7re 9121 |
. . 3
| |
| 3 | 1re 8073 |
. . 3
| |
| 4 | 2, 3 | readdcli 8087 |
. 2
|
| 5 | 1, 4 | eqeltri 2278 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 |
| This theorem is referenced by: 8cn 9124 9re 9125 9pos 9142 6lt8 9230 5lt8 9231 4lt8 9232 3lt8 9233 2lt8 9234 1lt8 9235 8lt9 9236 7lt9 9237 8th4div3 9258 8lt10 9637 7lt10 9638 ef01bndlem 12100 cos2bnd 12104 slotstnscsi 13060 slotsdnscsi 13088 2lgsoddprmlem1 15615 2lgsoddprmlem2 15616 2lgsoddprmlem3a 15617 2lgsoddprmlem3b 15618 2lgsoddprmlem3c 15619 2lgsoddprmlem3d 15620 |
| Copyright terms: Public domain | W3C validator |