| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | Unicode version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9072 |
. 2
| |
| 2 | 7re 9090 |
. . 3
| |
| 3 | 1re 8042 |
. . 3
| |
| 4 | 2, 3 | readdcli 8056 |
. 2
|
| 5 | 1, 4 | eqeltri 2269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 |
| This theorem is referenced by: 8cn 9093 9re 9094 9pos 9111 6lt8 9199 5lt8 9200 4lt8 9201 3lt8 9202 2lt8 9203 1lt8 9204 8lt9 9205 7lt9 9206 8th4div3 9227 8lt10 9605 7lt10 9606 ef01bndlem 11938 cos2bnd 11942 slotstnscsi 12897 slotsdnscsi 12925 2lgsoddprmlem1 15430 2lgsoddprmlem2 15431 2lgsoddprmlem3a 15432 2lgsoddprmlem3b 15433 2lgsoddprmlem3c 15434 2lgsoddprmlem3d 15435 |
| Copyright terms: Public domain | W3C validator |