| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 8re | Unicode version | ||
| Description: The number 8 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 8re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-8 9175 |
. 2
| |
| 2 | 7re 9193 |
. . 3
| |
| 3 | 1re 8145 |
. . 3
| |
| 4 | 2, 3 | readdcli 8159 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 |
| This theorem is referenced by: 8cn 9196 9re 9197 9pos 9214 6lt8 9302 5lt8 9303 4lt8 9304 3lt8 9305 2lt8 9306 1lt8 9307 8lt9 9308 7lt9 9309 8th4div3 9330 8lt10 9709 7lt10 9710 ef01bndlem 12267 cos2bnd 12271 slotstnscsi 13228 slotsdnscsi 13256 2lgsoddprmlem1 15784 2lgsoddprmlem2 15785 2lgsoddprmlem3a 15786 2lgsoddprmlem3b 15787 2lgsoddprmlem3c 15788 2lgsoddprmlem3d 15789 |
| Copyright terms: Public domain | W3C validator |