![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 7lt10 | Unicode version |
Description: 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
7lt10 |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7lt8 8704 |
. 2
![]() ![]() ![]() ![]() | |
2 | 8lt10 9107 |
. 2
![]() ![]() ![]() ![]() ![]() | |
3 | 7re 8603 |
. . 3
![]() ![]() ![]() ![]() | |
4 | 8re 8605 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 10re 8994 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | lttri 7686 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 2, 6 | mp2an 418 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: class class
class wbr 3867 ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 ax-pre-lttrn 7556 ax-pre-ltadd 7558 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-rab 2379 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-xp 4473 df-iota 5014 df-fv 5057 df-ov 5693 df-pnf 7621 df-mnf 7622 df-ltxr 7624 df-inn 8521 df-2 8579 df-3 8580 df-4 8581 df-5 8582 df-6 8583 df-7 8584 df-8 8585 df-9 8586 df-dec 8977 |
This theorem is referenced by: 6lt10 9109 |
Copyright terms: Public domain | W3C validator |